ECE 642 - Midterm Fall 2014

Please justify all your responses (responses without justifications will not be considered). Please label your axes and plot with care.

1. (3 points) Consider a digital information signal that encodes the message 01001. The signal is such that " 0 " is encoded with a rectangle of height 1 and duration 1 ms , while a " 1 " is encoded with a rectangle of height -1 and the same duration
a. Plot $x(t)$.
b. Calculate the Fourier transform $X(f)$.
c. Evaluate the absolute value and phase of the Fourier transform at frequency 1 kHz .
2. (4 points) We are given the passband signal $x_{c}(t)=\sqrt{2} \operatorname{sinc}(t) \cos (2 \pi 100 t+$ $2 \pi t$).
a. Calculate in-phase and quadrature components, namely $x_{I}(t)$ and $x_{Q}(t)$.
b. Calculate the amplitude $x_{A}(t)$.
c. Calculate the real part of the Fourier transform of the complex envelope $x_{z}(t)$.
d. Calculate the real part of the Fourier transform of the passband signal $x_{c}(t)$.
3. (2 points) The signal $x_{c}(t)=(\sin (20 \pi t)+\cos (40 \pi t)) \cos (2 \pi 1000 t)$ is given.
a. Provide a passband filter that produces at the output a tone at frequency 1010 Hz .
b. Represent the filter in the baseband domain.
4. (1 point) You have available a bandwidth of 20 MHz around the carrier frequency 2.4 GHz .
a. What is the largest bandwidth W of an analog information signal that can be transmitted using AM?
b. Respond to the same question for FM assuming $K_{f}=1$ and that the maximum value of the message is $3 W$.
