ECE 642 - Midterm Spring 2013

Please justify all your responses (responses without justifications will not be considered). Please label your axes and plot with care.

1. (2 points) The baseband signal $x(t)=4 \cos (8 \pi t)$ is amplified using an amplifier that produces the output $y(t)=2 x(t)+0.1 x^{2}(t)$.
a. Calculate $y(t)$.
b. Calculate and plot $Y(f)$.
c. The signal $y(t)$ goes through a filter with impulse response $h(t)=$ $12 \operatorname{sinc}(12 t)$. What is the output of this filter?
2. (2 points) We are given the complex envelope $x_{z}(t)=2 e^{j 6 \pi t}+$ $j e^{-j 6 \pi t}$.
a. Calculate $x_{I}(t)$ and $x_{Q}(t)$.
b. Calculate and plot the real part of $X_{z}(f)$. Also, calculate and plot the imaginary part of $X_{z}(f)$. Comment on the symmetry or lack thereof of the plots.
c. Calculate the passband signal $x_{c}(t)$ for carrier frequency $f_{c}=20 \mathrm{~Hz}$.
d. Calculate and plot the real and imaginary parts of $X_{c}(f)$. What is the bandwidth B_{T} ?
3. (2 points) Consider the baseband message $m(t)=\operatorname{sinc}(4 t)$. The message is transmitted using DSB-AM with $A_{c}=2$ and carrier frequency $f_{c}=10 \mathrm{~Hz}$.
a. Choose an appropriate sampling frequency for the passband signal $x_{c}(t)$.
b. Write MATLAB code to plot $\left|X_{c}(f)\right|$.
4. (2 points) The baseband message $m(t)=\sin (2 \pi t)$ is given.
a. Calculate the passband signal $x_{c}(t)$ obtained with PM modulation with $A_{c}=2, f_{c}=10 \mathrm{~Hz}$ and $k_{p}=1$.
b. What is (approximately) the bandwidth of the signal $x_{c}(t)$ of the previous point?
c. Calculate the passband signal $x_{c}(t)$ obtained with FM modulation with $A_{c}=2, f_{c}=10 \mathrm{~Hz}$ and $k_{f}=1$.
d. What is (approximately) the bandwidth of the signal $x_{c}(t)$ of the previous point?
5. (2 points) The passband received signal in a DSB-AM system is given as $y_{c}(t)=0.1 \cos (2 \pi(t-0.1)) \cos (2000 \pi(t-0.1))$.
a. Calculate the baseband equivalent $y_{z}(t)$.
b. Propose a baseband demodulator to recover the message $m(t)=$ $\cos (2 \pi t)$ (possibly with some delay).
