ECE 776 - Midterm Spring 2014

Please provide detailed answers.

- 1. (2 points) Consider random variables $X \backsim Ber(0.1)$ and Y = X + Z where $Z \backsim Ber(0.3)$ is independent of X.
 - a. Find the best estimator of X given Y and its probability of error.
 - b. Compare the result at the previous point with Fano's inequality.
- **2.** (1 point) Consider a stationary process $X_1, X_2, ...$ Prove that $H(X_i|X_1,...,X_{i-1})$ is non-increasing with i.
- **3.** (3 points) We are given two pmfs p(x) = (1/12, 1/2, 1/4, 1/6) and q(x) = (0, 1/2, 1/4, 1/4).
- a. Assume that q(x) is the correct pmf of a memoryless source, but a Huffman code C is constructed using the wrong pmf p(x). What is the redundancy L(C) H(X) of this code?
- b. Compare the result above with the redundancy of a Shannon code constructed using the wrong pmf p(x). Connect this result to the KL divergence between p(x) and q(x).
- c. Assume now that p(x) is the correct pmf of a memoryless source, but a Huffman code is constructed using the wrong pmf q(x). What can you say about the resulting code?
- 4. (2 points) We want to generate a random variable $Y \sim p(x) = (1/2, 1/4, 1/4)$. To this end, we have available a fair coin that we can toss independently multiple times, i.e., an iid sequence of variables $X_i \sim Ber(0.5)$. Find a way to generate Y from multiple tosses of the coin. Show that this scheme requires on average a number of coin tosses equal to H(Y).
- **5.** (1 point) Show that an arithmetic code, which has $l(x) = \lceil -\log_2 p(x) \rceil + 1$ and $c(x) = \lfloor \bar{F}(x) \rfloor_{l(x)}$, is prefix free.
- **6.** (2 points) A Ber(p) memoryless source is compressed using a fixed-to-variable Shannon code that operates over blocks of size k. Note that the per-symbol length $l(X^k)/k$ of the resulting codeword is a random variable. You can approximate $l(X^k)$ with the ideal codeword length in order to simplify the problem.
 - a. As k grows, what happens to $l(X^k)/k$?
- b. We wish to have a variance of $l(X^k)/k$ smaller than 0.1. How large should k be if p = 0.1?