
ECE 776 - Information theory
Final

Q1. (1 point) We would like to compress a Gaussian source with zero mean and variance 1.
We consider two strategies. In the first, we quantize with a step size ∆ so that the distortion
D = ∆2/12 is equal to 0.1 and then use entropy encoding on the quantized samples X∆

i . In
the second strategy, we use optimal rate-distortion coding with distortion D = 0.1. Compare
the number of bits per symbol needed for the two strategies (in particular, for the first use
results valid in the limit of a small ∆).

Sol.: For the first strategy, we have D = ∆2/12 = 0.1 so that ∆ =
√
1.2 = 1.1

R = H(X∆) = − log2∆+ h(X) = − log2(1.1) +
1

2
log2(2πe) = 1.91 bits/symbol,

while for the second

R(0.1) =
1

2
log2

µ
1

0.1

¶
= 1.66 bits/symbol.

Clearly, the optimal code according to rate-distortion theory requires a smaller number of
bits/symbol.

Q2. (1 point) Find the rate-distortion function R(D) for a Bernoulli source X ∼ Ber(0.6)
with distortion

d(x, x̂) =

⎧⎨⎩ 0 x = x̂
∞ x = 1, x̂ = 0
1 x = 0, x̂ = 1

.

Sol.: In order to obtain an average distortion D, we should have

D =
X
x,x̂

p(x, x̂)d(x, x̂).

It is easy to see that there exists only one joint pmf p(x, x̂) that satisfies the above conditions
and the constraint on the marginal pmf of X stated in the text:

X/X̂ 0 1
0 0.4−D D
1 0 0.6

.

To see this, notice that with this choice the following conditions are satisfied:

D =
X
x,x̂

p(x, x̂)d(x, x̂) = p(0, 1)

pX(1) = 0.6.

The rate-distortion function can be then obtained for D < 0.4 as

R(D) = I(X; X̂) = H(X)−H(X|X̂) = H(0.6)− pX̂(1)H(X|X̂ = 1) =

= H(0.6)− (D + 0.6)H(D/(D + 0.6)).

1



Notice that for D > 0.4, R(D) = 0.

Q3. (1 point) Assume that you have two parallel Gaussian channels with inputs X1 and
X2 and noises Z1 and Z2, respectively. Assume that the noise powers are E[Z

2
1 ] = 0.3 and

E[Z22 ] = 0.6, while the total available power is P = E[X2
1 ] +E[X2

2 ] = 0.1. Find the optimal
power allocation (waterfilling) and corresponding capacity.

Sol.: The waterfilling conditions are:

P1 = E[X2
1 ] = (μ− 0.3)+

P2 = E[X2
2 ] = (μ− 0.6)+

with
P1 + P2 = 0.1.

It follows that
(μ− 0.3)+ + (μ− 0.6)+ = 0.1.

If you assume both P1 and P2 > 0, it is easy to see that there is no solution to the previous
equation. Instead, if we set P2 = 0, we get (μ − 0.3) = 0.1, from which we obtain μ = 0.4
and

P1 = (0.4− 0.3)+ = 0.1
P2 = (0.4− 0.6)+ = 0,

i.e., all the power is used on the best channel. The corresponding capacity is then

C =
1

2
log2

µ
1 +

0.1

0.3

¶
= 0.21 bits/symb.

Q4. (1 point) Two sensors collect information about the temperature of a given process
in different locations. At each time instant, they both need to communicate whether the
temperature of the process is above a given threshold (alarm) or not (normal). Since the
sensors are in adjacent areas, their measurements U and V are correlated according to the
joint PMF

U\V normal alarm
normal 0.8 0.05
alarm 0.05 0.1

.

How many bits R1 and R2 are needed to deliver this information if U and V are encoded
independently? What if we use Slepian-Wolf source coding?

Sol.: If U and V are decoded independently we need

R1 ≥ H(U) = H (0.85) = 0.61

R2 ≥ H(V ) = 0.61,
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and a total number of bits R1 + R2 ≥ 0.61 + 0.61 = 1.22. On the contrary, if we use
Slepian-Wolf coding, we only need

R1 ≥ H(U |V ) = 0.85 ·H
µ
0.8

0.85

¶
+ 0.15 ·H

µ
0.05

0.15

¶
= 0.41

R2 ≥ H(V |U) = 0.41
R1 +R2 ≥ H(U, V ) = −2 · 0.05 · log2(0.05)− 0.1 · log2(0.1)− 0.8 · log2(0.8) = 1.02

so that the total number of bits needed is only R1+R2 ≥ 1.02 provided that R1 ≥ 0.32 and
R2 ≥ 0.32.

P1. (2 points) We would like to transmit a Bernoulli source Xi ∼ Ber(0.7) with Hamming
distortion D over a binary symmetric channel (BSC) with probability of error p.
(a) Assuming that we send one source symbol for each channel symbol, can the source Xi

be transmitted losslessly (D = 0) over the BSC if p = 0.3?

Sol.: The condition to be verified is that R(0) = H(X) ≤ C = 1 − H(p). However, since
H(X) = H(0.7) = 0.88 bits/ source symbol and C = 1 − H(0.3) = 0.12 bits/ channel
symbol, the condition does not hold true, and, as a result, the source cannot be transmitted
over the channel.

(b) In the same condition as at point (a), can we send source Xi with distortion D = 0.4?

Sol.: Since D = 0.4 > min(0.7, 0.3) = 0.3, we have that the corresponding rate is R(0.4) = 0
bits/ source symbol, so that the source can definitely be transmitted over the channel.

(c) Going back to the case D = 0, what is the largest rate r=source symbol/channel symbol
that we can transmit over the channel?

Sol.: The condition reads

H(0.7) · r ≤ C → r ≤ C

H(0.7)
=
0.12

0.88
= 0.14 source symb/ channel symb.

(d) Repeat (c) with D = 0.1.

Sol.: We have

R(0.1) · r ≤ C → r ≤ C

R(0.1)
=

0.12

H(0.7)−H(0.1)
=

=
0.12

0.88− 0.47 = 0.29 source symb/ channel symb.

P2. (2 points) Consider the Gaussian channel in the figure, in which the transmitted signal
X (E[X2] = P ) is received by two antennas with

Y1 = X + Z1

Y2 = X + Z2
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where Z1 and Z2 are independent, and E[Z2i ] = Ni with N1 < N2. Moreover, the signal at
the two antennas is combined as Y = αY1 + (1− α)Y2 before detection (0 ≤ α ≤ 1).

a) Find the capacity of the channel for a given α.

Sol.: Since we have

Y = αY1 + (1− α)Y2 = X + αZ1 + (1− α)Z2,

the channel at hand is a Gaussian channel with signal power P and noise power α2N1+(1−
α)2N2 and the corresponding capacity is

C =
1

2
log2

µ
1 +

P

α2N1 + (1− α)2N2

¶
.

b) Using your result at the previous point, find the optimal α that maximizes the capacity
and write down the corresponding maximum capacity.

Sol.: Maximizing the capacity C implies minimizing the noise power α2N1 + (1 − α)2N2,
which is a convex function of α, so that the optimality condition is

d

dα
(α2N1 + (1− α)2N2) = 0.

It follows that the optimal α reads

α∗ =
N2

N1 +N2
,

that is, proportionally more weight is given to the less noisy received signal. The correspond-
ing capacity is

C =
1

2
log2

µ
1 +

P

α∗2N1 + (1− α∗)2N2

¶
=

=
1

2
log2

µ
1 +

P

N1
+

P

N2

¶
.
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P3. (2 points) You are given a discrete memoryless multiple access channel (MAC) with
inputs X1 ∈ {0, 1, 2} and X2 ∈ {0, 1, 2} and output Y = X1 +X2.

a) Assuming that both X1 and X2 are chosen uniformly and independently in their range,
find the achievable rate region of the MAC.

Sol.: For fixed pmfs of the inputs X1 and X2, p(x1) = u(x1) and p (x2) = u(x2), we have

R1 ≤ I(X1;Y |X2) = H(Y |X2)−H(Y |X1,X2) = H(Y |X2) = H(X1) = log2 3 = 1.58

R2 ≤ I(X2;Y |X2) = H(X2) = log2 3 = 1.58

R1 +R2 ≤ I(X1, X2;Y ) = H(Y )−H(Y |X1, X2) = H(Y )

In order to evaluate H(Y ) we need to evaluate the pmf of Y as follows:

p (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pX1(0)pX2(0) = 1/9 y = 0
2 · pX1(1)pX2(0) = 1/9 y = 1
3 · 1/9 y = 2
2 · 1/9 y = 3
1/9 y = 4

so that

H(Y ) = −2 · 1
9
log2

µ
1

9

¶
− 2 · 2

9
log.2

µ
2

9

¶
− 1
3
log2

µ
1

3

¶
= 2.2

b) Assume now that the two transmitters can cooperate for transmission over this MAC.
What is the capacity region (notice that in this case maximization over the input distribution
is required)?

Sol.: In this case we can achieve

R1 +R2 ≤ I(X1,X2;Y ) = H(Y )

for any joint pmf p(x1, x2). In particular, we can optimize p(x1, x2) in order to maximize
H(Y ). We notice that H(Y ) ≤ log2 |Y| = log2 5 = 2.32 with equality if p(y) = u(y). Can
this value be achieved with the right choice of p(x1, x2)? Observing that we must have

p(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p(0, 0) = 1/5 y = 0
p(0, 1) + p(1, 0) = 1/5 y = 1
p(1, 1) + p(2, 0) + p(0, 2) = 1/5 y = 2
p(2, 1) + p(1, 2) = 1/5 y = 3
p(2, 2) = 1/5 y = 4

,

we can conclude that it is enough to choose p(x1, x2) as

X1\X2 0 1 2
0 1/5 1/10 1/15
1 1/10 1/15 1/10
2 1/15 1/10 1/5

.

We can then conclude that the capacity region with cooperation is characterized by R1+R2 ≤
log2 5 = 2.32.

5


