ECE 776 - Information theory (Spring 2012) Final

P1 (1 point). Consider the random process $X_i = UZ_i$, where U equals -1 or 1 with equal probability and Z_i are i.i.d. over index *i* and distributed as $Z_i \sim f(z) = \lambda e^{-\lambda z}$, with $z \ge 0$ (and f(z) = 0 otherwise).

a. What can we say about the limit $\lim_{n\to\infty} 1/n \sum_{i=1}^n X_i$?

b. Calculate the differential entropy rate $\lim_{n\to\infty} \frac{1}{n}h(X^n)$.

P2 (1 point). For any random variables $X_1, ..., X_n$, prove the equality

$$H(X_1, ..., X_n) \le \frac{1}{n-1} \sum_{i=1}^n H(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n).$$

(Hint: Note that the equality is equivalent to $nH(X_1, ..., X_n) \leq \sum_{i=1}^n H(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) + H(X_1, ..., X_n)$).

P3 (1 point). Derive the equation that describes the typical set for a Gaussian distribution with mean μ and variance σ^2 .

P4 (1 point). Suppose that X is a random variable with support $[1, \infty)$ and Y is a random variable with support [0, 1]. Moreover, we have $E[X] = \mu_X \ge 0$ and $E[Y] = \mu_Y \ge 0$. Prove the inequality

$$h(X|Y) \le \log_2\left(e(\mu_X - \mu_Y)\right).$$

P5 (2 points). Generate two random codebooks C_1 and C_2 with 2^{nR_1} and 2^{nR_2} codewords of length *n* symbols, where the symbols are generated i.i.d. with probabilities $p(x_1)$ and $p(x_2)$, respectively. Define the set

$$\mathcal{B} = \{ (x_1^n, x_2^n) : x_1^n \in \mathcal{C}_1, x_2^n \in \mathcal{C}_2, (x_1^n, x_2^n) \in A_{\epsilon}^{(n)} \}$$

where $A_{\epsilon}^{(n)}$ is the set of jointly typical sequences with respect to a joint pmf $p(x_1, x_2)$ with marginal pmfs $p(x_1)$ and $p(x_2)$. Show that

$$2^{n(R_1+R_1-I(X_1;X_2)-3\epsilon)} < E[|\mathcal{B}|] < 2^{n(R_1+R_1-I(X_1;X_2)+3\epsilon)}$$

for n large enough. Please provide all the details of the proof (you can use the theorems proved in class).

P6 (1 point). We wish to transmit a Ber(p) process V^n over *n* channel uses of a binary symmetric channel with crossover probability 0.3. Find necessary and sufficient conditions on *p* such that V^n can be estimated with vanishing error probability at the receiver.

P7 (1 point). We have the two independent random variables X_1 and X_2 with pmfs p(x) and q(x), respectively, with $x \in \mathcal{X}$. Prove that

$$\Pr[X_1 = X_2] \ge 2^{-(H(p(x)) + D(p(x))||q(x)))}.$$

(Hint: $p(x) = 2^{\log_2 p(x)}$).

P8 (1 point) For any source (not necessarily Gaussian) with differential entropy h(X), prove the following bound:

$$R(D) \ge h(X) - \frac{1}{2}\log_2(2\pi eD).$$

When do we have equality? Therefore, is a Gaussian source with the same differential entropy h(X) easier or more difficult to compress?

P9 (2 points) Consider the Gaussian channel with received signal $Y = (Y_1, Y_2)$, where

$$Y_1 = X + Z_1$$
$$Y_2 = X + Z_2,$$

the power constraint is P and the noises (Z_1, Z_2) are independent and with variances N_1 and N_2 .

a. Calculate the capacity.

b. Can we simplify the decoder so that it operates on a single received symbol rather than two for each channel use?

Sol:

P1. a. The process is stationary but not ergodic. We have that the quantity $1/n \sum_{i=1}^{n} X_i$ tends to $1/\lambda$ with probability 1/2 and $-1/\lambda$ with probability 1/2 by the (strong) law of large numbers.

b. We have

$$\lim_{n \to \infty} \frac{1}{n} h(X^n) = \lim_{n \to \infty} \frac{1}{n} h(X^n, U).$$
$$= \lim_{n \to \infty} \frac{1}{n} h(X^n | U) + \underline{1}$$
$$= \log_2(\frac{e}{\lambda}) + \underline{1},$$

where the first equality holds since U is a function of X^n (except on a set of measure zero).

P2. We have

$$H(X_1, ..., X_n) = H(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) + H(X_i | X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$$

$$\leq H(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) + H(X_i | X_1, ..., X_{i-1}).$$

Summing over i, we get

$$nH(X_1, ..., X_n) \le \sum_{i=1}^n H(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n) + H(X_1, ..., X_n),$$

which is the desired result.

P3. Please see lecture notes.

P4. We have

$$h(X|Y) = \int h(X|Y = y)f(y)dy$$

=
$$\int h(X - y|Y = y)f(y)dy$$

=
$$h(X - Y|Y)$$

$$\leq h(X - Y)$$

$$\leq \log_2(e(\mu_X - \mu_Y)),$$

where the second inequality follows by the maximum entropy theorem since X - Y has support $[0, \infty)$ and mean $E[X - Y] = \mu_X - \mu_Y$.

P5. Observe that for given codebooks, we have

$$|\mathcal{B}| = \sum_{w_1=1}^{2^{nR_1}} \sum_{w_1=1}^{2^{nR_2}} 1\{(x_1^n(w_1), x_2^n(w_2)) \in A_{\epsilon}^{(n)}\},\$$

where $1{x} = 0$ if x is false and 1 otherwise. We can then write

$$E[|\mathcal{B}|] = \sum_{w_1=1}^{2^{nR_1}} \sum_{w_1=1}^{2^{nR_2}} E[1\{(X_1^n(w_1), X_2^n(w_2)) \in A_{\epsilon}^{(n)}\}]$$
$$= \sum_{w_1=1}^{2^{nR_1}} \sum_{w_1=1}^{2^{nR_2}} \Pr\{(X_1^n(w_1), X_2^n(w_2)) \in A_{\epsilon}^{(n)}\}.$$

But we know that

$$(1-\epsilon)2^{-n(I(X_1;X_2)+3\epsilon)} \le \Pr\{(X_1^n(w_1), X_2^n(w_2)) \in A_{\epsilon}^{(n)}\} \le 2^{-n(I(X_1;X_2)-3\epsilon)},$$

where the first inequality holds for n large enough. The desired result follows immediately.

P6. The necessary and sufficient conditions on p is

$$H(0.3) \le 1 - H(p),$$

from which we can derive the condition on p.

P7. We have

$$\Pr[X_1 = X_2] = \sum_x p(x)q(x)$$

= $\sum_x p(x)2^{\log_2 q(x)}$
 $\leq 2^{\sum_x p(x)\log_2 q(x)}$
= $2^{\sum_x p(x)\log_2 (q(x)\frac{p(x)}{p(x)})}$
= $2^{\sum_x p(x)\log_2 (q(x)\frac{p(x)}{p(x)})}$
= $2^{-H(p(x))-D(p(x)||q(x))}.$

P8. The result follows from the inequality

$$I(X; \hat{X}) = h(X) - h(X|\hat{X})$$

$$\geq h(X) - \frac{1}{2}\log_2(2\pi eD),$$

where the inequality can be derived as seen in class. We have equality if X is Gaussian. Therefore, a Gaussian source with the same differential entropy h(X) is easier to compress.

P9. Following the same steps seen in class we get

$$C = \frac{1}{2}\log_2\left(1 + \frac{P}{N_1} + \frac{P}{N_2}\right).$$

Moreover, it can be checked that a decoder that operates with the received signal $\frac{1}{\sqrt{N_1}}Y_1 + \frac{1}{\sqrt{N_2}}Y_2$ achieves the same capacity.