ECE 744: Final Fall 2014

Please provide clear and complete answers by detailing your derivations.

1. (1 point) Consider the optimization problem

minimize
$$3e^{-x_1} + e^{-x_2}$$

s.t. $x_1^2 + x_2^2 = 2$

Is it convex? If not, obtain an equivalent convex problem (i.e., a convex problem that has the same optimal value and solutions).

2. (2 points) We are given the problem

where $c \neq 0$ and $a \neq 0$.

a. Calculate both p^* and X_{opt} as a function of c and a, and substantiate your derivation by means of a sketch.

b. Check that the solution (when it exists) derived at the previous point satisfies the KKT conditions.

3. (1 point) Consider the problem of allocating the information rates x_i , i = 1, ..., n, to each one of n data users. The rates must satisfy some constraints that are defined by a convex set C, i.e., $x \in C$. The allocation is done by maximizing the function $\sum_{i=1}^{n} \ln(x_i)$. Write down the optimality conditions for this problem and interpret the result (Hint: This optimization is said to provide proportional fairness).

4. (1 point) Prove that the classification margin for a linear classifier $t(x) = w^T x + b$ at a (correctly classified) data point (x_0, y_0) with $x_0 \in \mathbb{R}^n$ and $y_0 \in \{-1, 1\}$ is given as $y_0 t(x_0)/||w||_2$.

5. (3 point) Consider the so called inverse waterfilling problem

minimize
$$\sum_{i=1}^{n} \log \frac{a_i}{x_i}$$
s.t.
$$0 \le x_i \le a_i$$

$$\sum_{i=1}^{n} x_i \le D$$

where $a_i > 0$ and D > 0 are parameters. (This problem finds application in the quantization of n Gaussian sources of variance a_i for i = 1, ..., n.)

a. What can be said about the existence of an optimal primal and dual solution?

b. Write the KKT conditions.

- **c.** Find a (the?) solution.
- ${\bf 6.}~({\bf 3~point})$ Consider the (simple!) problem

minimize
$$|a^Tx + b|$$

with $x \in \mathbb{R}^n$.

- **a.** Write the epigraph form.
- **b.** Calculate the dual function for the epigraph form.
- ${f c.}$ Comment on strong duality and constraint qualifications for the epigraph form.