ECE 232 - Circuits and Systems II

Final
Please provide clear and complete answers. Don't forget to specify the units of measure!

1. (4 points) We wish to design a high-pass filter using a capacitor of capacitance $C=$ $4 \times 10^{-2} \mathrm{~F}$ and a resistor of resistance R. We fix the $3-\mathrm{dB}$ cut-off frequency to 4 Hz .
a. Draw the circuit by clearly specifying input and output voltages and calculate R.
b. Calculate the amplitude frequency response at $1 \mathrm{~Hz}, 4 \mathrm{~Hz}, 20 \mathrm{~Hz}$.
c. Assume that the input is a constant voltage source of 2 V and that the initial voltage on the capacitor is 1 V (assume that the positive terminal is the same for both source and capacitor). Calculate the voltage $v(t)$ across the capacitor for all $t \geq 0$ using time domain analysis.
d. Confirm the result at the previous point by calculating $v(t)$ for all $t \geq 0$, when the input is a constant voltage source of 2 V and the initial voltage on the capacitor is 1 V , via partial fraction expansion.
2. (2 points) Calculate the convolution between $x(t)=t(u(t)-u(t-1))$ and $h(t)=$ $(1-t)(u(t)-u(t-1))$ (don't forget to check for the continuity of the function).
3. (2 points) Calculate the Laplace transform of

$$
(t-4) \sin (3 t-12) u(t-4)
$$

by detailing all the steps.

4. (4 points) Consider the circuit in the figure. The input is $i_{g}(t)$ and the output is $i(t)$.
a. What kind of filter is it? Argue your response through considerations on the impedances in the circuit.
b. Calculate the transfer function $H(s)$.
c. Assume that $L=1 \mathrm{H}, C=1 \mathrm{~F}$ and $R=1 \Omega$. Calculate and plot poles and zeros.
d. If the input is $i_{g}(t)=6 \cos (t+\pi / 4)$ calculate the steady-state output $i(t)$.
5. (1 point) Draw the Bode plot for the transfer function $H(s)=\frac{s+0.1}{s+1000}$.

Solutions:

1. a. Please see class notes or text. The input is a voltage source and the output is the voltage across the resistor. We also have $\omega_{c}=1 / \tau$ and hence

$$
\begin{aligned}
R & =1 /\left(\omega_{c} C\right)=1 /(2 \pi 4 \cdot 4) \times 10^{2} \\
& =0.995 \Omega .
\end{aligned}
$$

b. We have

$$
H(s)=\frac{R}{R+1 /(s C)}=\frac{s}{s+1 / \tau}
$$

and thus we can calculate $|H(j 2 \pi)|=0.24,|H(j 2 \pi 4)|=1 / \sqrt{2}$, and $|H(j 2 \pi 20)|=0.98$.
c. This is a step response problem. We get

$$
\begin{aligned}
v(t) & =v(\infty)+(v(0)-v(\infty)) e^{-t / \tau} \\
& =2+(1-2) e^{-2 \pi 4 t} \\
& =2-e^{-2 \pi 4 t}
\end{aligned}
$$

for $t \geq 0$.
d. In the Laplace domain, we use the equivalent series for the capacitor, which adds a voltage source of $1 / s$, to get

$$
\begin{aligned}
V(s) & =\left(\frac{2}{s}-\frac{1}{s}\right) \frac{2 \pi 4}{s+2 \pi 4}+\frac{1}{s} \\
& =\frac{2 \pi 4}{s(s+2 \pi 4)}+\frac{1}{s}
\end{aligned}
$$

since the transfer function between the voltage source and the voltage on the capacitor is $\frac{2 \pi 4}{s+2 \pi 4}$ and the second term is due to the equivalent series representation for the capacitor. Using partial fraction expansion, we write:

$$
K_{1}=1
$$

and

$$
K_{2}=\frac{2 \pi 4}{-2 \pi 4}=-1
$$

From which we get

$$
v(t)=1-e^{-2 \pi 4 t}+1=2-e^{-2 \pi 4 t},
$$

as desired.
2. For $0 \leq t \leq 1$, we have

$$
\begin{aligned}
y(t) & =\int_{0}^{t}(1-\tau)(t-\tau) d \tau \\
& =\int_{0}^{t}\left(t-\tau-\tau t+\tau^{2}\right) d \tau \\
& =t^{2}-\left.\frac{1}{2}(1+t) \tau^{2}\right|_{0} ^{t}+\left.\frac{1}{3} \tau^{3}\right|_{0} ^{t} \\
& =t^{2}-\frac{1}{2}(1+t) t^{2}+\frac{1}{3} t^{3}= \\
& =\frac{1}{2} t^{2}-\frac{1}{6} t^{3} .
\end{aligned}
$$

For $1 \leq t \leq 2$, we have

$$
\begin{aligned}
y(t) & =\int_{t-1}^{1}(1-\tau)(t-\tau) d \tau \\
& =t(1-t+1)-\left.\frac{1}{2}(1+t) \tau^{2}\right|_{t-1} ^{1}+\left.\frac{1}{3} \tau^{3}\right|_{t-1} ^{1} \\
& =t(2-t)-\frac{1}{2}(1+t)\left(1-(t-1)^{2}\right)+\frac{1}{3}\left(1-(t-1)^{3}\right)
\end{aligned}
$$

And we also have $y(t)=0$ for $t \leq 0$ and $t \geq 2$. Continuity at $t=0,1,2$ is easy to prove.
3. Since

$$
\begin{aligned}
\mathcal{L}(t \sin (3 t) u(t)) & =-\frac{d}{d s} \frac{3}{s^{2}+9} \\
& =\frac{6 s}{\left(s^{2}+9\right)^{2}}
\end{aligned}
$$

then

$$
\mathcal{L}((t-4) \sin (3(t-4)) u(t-4))=e^{-4 s} \frac{6 s}{\left(s^{2}+9\right)^{2}}
$$

4. a. It is a band-reject filter since it can be seen that $I(j \omega)=I_{g}(j \omega)$ for both high and low frequencies: the system performs current division and the impedance of the series $L C$ branch goes to infinity in both cases. Moreover, similar to the discussion in class, it can be easily seen that $I\left(j \omega_{c}\right)=0$ for $\omega_{c}=1 / \sqrt{L C}$ since the impedance of the LC branch satisfies $j \omega_{c} L+1 /\left(j \omega_{c} C\right)=0$.
b. We have

$$
\begin{aligned}
H(s) & =\frac{s L+\frac{1}{s C}}{R+s L+\frac{1}{s C}} \\
& =\frac{s^{2}+\omega_{0}^{2}}{s^{2}+2 \alpha s+\omega_{0}^{2}}
\end{aligned}
$$

with $\omega_{0}^{2}=1 /(L C)$ and $\alpha=R /(2 L)$.
c. With the given values, we can calculate $\omega_{0}^{2}=1$ and $\alpha=1 / 2$. The poles are

$$
\begin{aligned}
& s=-\alpha+j \sqrt{\omega_{0}^{2}-\alpha^{2}}=-\alpha+j \frac{\sqrt{3}}{2} \\
& s=-\alpha+j \sqrt{\omega_{0}^{2}-\alpha^{2}}=-\alpha-j \frac{\sqrt{3}}{2} .
\end{aligned}
$$

The zeros are $\pm j 1$.
d. The output is easily seen to be zero in steady state since $H(j 1)=0$.
5. We write

$$
\begin{aligned}
|H(j \omega)| & =\frac{0.1\left|1+j \frac{\omega}{0.1}\right|}{1000\left|1+j \frac{\omega}{1000}\right|} \\
& =10^{-4} \frac{\left|1+j \frac{\omega}{0.1}\right|}{\left|1+j \frac{\omega}{1000}\right|} .
\end{aligned}
$$

Using the usual rules, the plot is constant and equal to -80 dB up to $\omega=0.1 \mathrm{rad} / \mathrm{s}$. It then goes up by $20 \mathrm{~dB} /$ decade thus reaching 0 dB at $\omega=1000 \mathrm{rad} / \mathrm{s}$. It then stays flat at this value.

