ECE 776 - Information theory (Spring 2010)
 Final

Q1 (1 point). Consider a Markov chain $X_{1}-X_{2}-X_{3}$ with $\left|\mathcal{X}_{1}\right|=3,\left|\mathcal{X}_{2}\right|=2\left|\mathcal{X}_{3}\right|=4$ prove that $I\left(X_{1} ; X_{3}\right) \leq 1$.

Sol.: We have

$$
I\left(X_{1} ; X_{3}\right) \leq I\left(X_{1} ; X_{2}\right) \leq H\left(X_{2}\right) \leq \log _{2}\left|\mathcal{X}_{2}\right|=1,
$$

where the first inequality follows from the data processing inequality.
Q2 (1 point). Consider an i.i.d. process X^{n} with pdf $f(x)=c \cdot 2^{-x^{4}}$, where c is an appropriate constant. Prove that

$$
\operatorname{Pr}\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}^{4} \leq h(X)+\log _{2} c+\epsilon\right] \rightarrow 1 \text { as } n \rightarrow \infty
$$

for any $\epsilon>0$ (Hint: What is the set of typical sequences?)
Sol.: The set of typical sequences is

$$
A_{\epsilon}^{(n)}=\left\{x^{n} \in \mathbb{R}^{n}: h(X)-\epsilon \leq-\frac{1}{n} \log _{2} f\left(x^{n}\right) \leq h(X)+\epsilon\right\}
$$

but $f\left(x^{n}\right)=c^{n} \prod_{i=1}^{n} 2^{-x_{i}^{4}}$, so $-\frac{1}{n} \log _{2} f\left(x^{n}\right)=-\log _{2} c+\frac{1}{n} \sum_{i=1}^{n} x_{i}^{4}$, so that we can write

$$
A_{\epsilon}^{(n)}=\left\{x^{n} \in \mathbb{R}^{n}: \log _{2} c+h(X)-\epsilon \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{4} \leq \log _{2} c+h(X)+\epsilon\right\}
$$

which answers the question.

Q3 (1 point). Consider an additive white Gaussian noise channel $Y=X+Z$ with $Z \sim$ $\mathcal{N}(0, N)$ subject only to an output power constraint of P (no constraint is imposed on the input!). Evaluate the corresponding capacity

$$
C=\max _{\substack{f(x): \\ E\left[Y^{2}\right] \leq P}} I(X ; Y)
$$

Sol.: We have

$$
\begin{aligned}
I(X ; Y) & =h(Y)-h(Y \mid X)=h(Y)-\frac{1}{2} \log _{2}(2 \pi e N) \\
& \leq \frac{1}{2} \log _{2}(2 \pi e P)-\frac{1}{2} \log _{2}(2 \pi e N) \\
& =\frac{1}{2} \log _{2}\left(\frac{P}{N}\right),
\end{aligned}
$$

where the inequality follows from the fact that the entropy $h(Y)$ is maximized by a Gaussian distribution under power constraint $E\left[Y^{2}\right] \leq P$.

Q4 (1 point). Consider the i.i.d. Gaussian vector process [$X_{1} X_{2}$] with zero-mean, independent entries and powers $E\left[X_{1}^{2}\right]=1$ and $E\left[X_{2}^{2}\right]=3$. Focusing on the MSE distortion, find the rate-distortion function using reverse waterfilling.

Sol.: Using reverse waterfilling, we find that

- If $D \geq 4, R(D)=0$;
- If $2 \leq D \leq 4, R(D)=\frac{1}{2} \log _{2} \frac{3}{D-1} ;$
- If $D \leq 2, R(D)=\frac{1}{2} \log _{2} \frac{1}{D / 2}+\frac{1}{2} \log _{2} \frac{3}{D / 2}$.

P1 (2 points) Consider the channel

$$
p(y \mid x)=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{2}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

where rows correspond to different $x \in\{0,1,2\}$ and columns to different $y \in\{0,1,2\}$. The number of channel uses is n.
a. Argue that symbol $x=2$ should not be used.
b. Using only the input set $\{0,1\}$ find the optimal input distribution and the capacity.
c. Assume that we want to operate the channel with a (suboptimal) code (of length n) that is randomly generated with $p_{X}(0)=3 / 4$ and $p_{X}(1)=1 / 4$. What is the rate achievable with this code?
d. To achieve the rate R obtained at the previous point, consider the following transmission scheme. An i.i.d. binary code $B^{2 n}$ of length $2 n$ and rate $2 R$ is constructed i.i.d. with $p_{B}(0)=1 / 2$ and $p_{B}(1)=1 / 2$. Every two bits of $B^{2 n}$ are mapped into one input bit of the transmitted sequence X^{n}. Find one such mapping so that X^{n} has the desired distribution $\left(p_{X}(0)=3 / 4\right.$ and $\left.p_{X}(1)=1 / 4\right)$.

Sol.: a. Transmitting $x=2$ may result in any output with the same probability, so that the decoder has no means to find out whether $x=2$ was transmitted.
b. The channel is (weakly) symmetric. In fact, it is an erasure channel with erasure probability $1 / 3$. Therefore, the optimal input distribution is $p_{X}(0)=1 / 2$. The capacity is

$$
C=1-1 / 3=2 / 3 .
$$

c. The rate achievable by this code is

$$
\begin{aligned}
R & =I(X ; Y) \\
& =H(Y)-H(1 / 3) \\
& =H(1 / 2,1 / 3,1 / 6)-0.92 \\
& =1.46-0.92=0.54
\end{aligned}
$$

where we have calculated $p_{Y}(0)=3 / 4 \cdot 2 / 3=1 / 2, p_{Y}(1)=1 / 3 \cdot 3 / 4+1 / 3 \cdot 1 / 4=1 / 3$, $p_{Y}(2)=1 / 6$.
d. A mapping that satisfies the requirement is

$$
\begin{array}{lll}
00 & \rightarrow & 0 \\
01 & \rightarrow & 0 \\
10 & \rightarrow & 0 \\
11 & \rightarrow & 1 .
\end{array}
$$

P2 (2 points) Consider a horse race with four horses with winning probabilities $p=\{1 / 8,1 / 8,1 / 4,1 / 2\}$. The odds fair with respect to the uniform distribution $r=\{1 / 4,1 / 4,1 / 4,1 / 4\}$. You start with $\$ 1$.
a. Consider the betting strategy $b=\{1 / 4,1 / 4,1 / 4,1 / 4\}$. What is the (long-term) doubling rate of this strategy? Approximately, how much money you would have after 100 races?
b. What is the optimal betting strategy $b_{1}, b_{2}, b_{3}, b_{4}$ that maximizes the (long-term) doubling rate? Find the corresponding doubling rate. Approximately, how much money you would have after 100 races?

Sol.: a. The doubling rate is

$$
\begin{aligned}
W & =D(p \| r)-D(p \| b) \\
& =\sum_{k} p_{k} \log _{2}\left(\frac{b_{k}}{r_{k}}\right)=0,
\end{aligned}
$$

therefore the amount of money after 100 races is about

$$
S_{n} \simeq \$ 1 \cdot 2^{n W}=\$ 1
$$

b. The optimal betting strategy is $b=p$. This leads to the doubling rate

$$
\begin{aligned}
W^{*} & =D(p \| r) \\
& =1 / 4
\end{aligned}
$$

so that

$$
\begin{aligned}
S_{n} & \simeq \$ 1 \cdot 2^{\frac{100}{4}} \\
& =\$ 33554432
\end{aligned}
$$

P3 (2 points) Consider the additive Gaussian noise channel

$$
Y_{i}=X_{i}+Z_{i}
$$

where we have power constraint on X^{n} equal to $P=3$. The noise Z^{n} has independent Gaussian samples but with possibly non-zero and time-varying mean.
a. Assume that $Z_{i} \sim \mathcal{N}\left(\frac{1}{i^{2}}, 1\right)$ and find the capacity.
b. Assume that $Z_{i} \sim \mathcal{N}\left(Q_{i}, 1\right)$ with Q_{i} being a random variable with $Q_{i} \sim \mathcal{N}(0,2)$. Find the capacity.
c. For the scenario at point a, consider the transmission of an i.i.d. Gaussian process V^{n} with $V_{i} \sim \mathcal{N}(0,1)$. Can we construct a source-channel coding scheme that enables transmission at MSE equal to 0.75 ?
d. Repeat the point above with MSE equal to 0.2

Sol.: a. By evaluating the mutual information, one obtains $C=1 / 2 \log _{2}(1+3)=1$.
b. We can write

$$
Z_{i}=Q_{i}+U_{i}
$$

where $U_{i} \sim \mathcal{N}(0,1)$ and independent of Q_{i}. Therefore, $Z_{i} \sim \mathcal{N}(0,3)$ and $C=1 / 2 \log _{2}(1+$ $3 / 3)=1 / 2$.
c. We know that this is possible if and only if

$$
R(D)=\frac{1}{2} \log _{2} \frac{1}{D} \leq C=1 .
$$

Therefore, $D=0.75$ is feasible since $R(0.75)=0.2$.
d. This is instead not possible since $R(0.2)=1.16$.

