
ECE 776 - Information theory (Spring 2010)
Final

Q1 (1 point). Consider a Markov chain X1−X2−X3 with |X1| = 3, |X2| = 2 |X3| = 4 prove
that I(X1;X3) ≤ 1.

Sol.: We have
I(X1;X3) ≤ I(X1;X2) ≤ H(X2) ≤ log2 |X2| = 1,

where the first inequality follows from the data processing inequality.

Q2 (1 point). Consider an i.i.d. processXn with pdf f(x) = c·2−x4 , where c is an appropriate
constant. Prove that
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which answers the question.

Q3 (1 point). Consider an additive white Gaussian noise channel Y = X + Z with Z ∼
N (0, N) subject only to an output power constraint of P (no constraint is imposed on the
input!). Evaluate the corresponding capacity
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where the inequality follows from the fact that the entropy h(Y ) is maximized by a Gaussian
distribution under power constraint E[Y 2] ≤ P.

Q4 (1 point). Consider the i.i.d. Gaussian vector process [X1 X2] with zero-mean, indepen-
dent entries and powers E[X2

1 ] = 1 and E[X2
2 ] = 3. Focusing on the MSE distortion, find

the rate-distortion function using reverse waterfilling.

Sol.: Using reverse waterfilling, we find that
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P1 (2 points) Consider the channel
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where rows correspond to different x ∈ {0, 1, 2} and columns to different y ∈ {0, 1, 2}. The
number of channel uses is n.
a. Argue that symbol x = 2 should not be used.
b. Using only the input set {0, 1} find the optimal input distribution and the capacity.
c. Assume that we want to operate the channel with a (suboptimal) code (of length n) that
is randomly generated with pX(0) = 3/4 and pX(1) = 1/4.What is the rate achievable with
this code?
d. To achieve the rate R obtained at the previous point, consider the following transmission
scheme. An i.i.d. binary code B2n of length 2n and rate 2R is constructed i.i.d. with
pB(0) = 1/2 and pB(1) = 1/2. Every two bits of B2n are mapped into one input bit of the
transmitted sequence Xn. Find one such mapping so that Xn has the desired distribution
(pX(0) = 3/4 and pX(1) = 1/4).

Sol.: a. Transmitting x = 2 may result in any output with the same probability, so that the
decoder has no means to find out whether x = 2 was transmitted.
b. The channel is (weakly) symmetric. In fact, it is an erasure channel with erasure proba-
bility 1/3. Therefore, the optimal input distribution is pX(0) = 1/2. The capacity is

C = 1− 1/3 = 2/3.

c. The rate achievable by this code is

R = I(X;Y )

= H(Y )−H(1/3)

= H(1/2, 1/3, 1/6)− 0.92
= 1.46− 0.92 = 0.54,
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where we have calculated pY (0) = 3/4 · 2/3 = 1/2, pY (1) = 1/3 · 3/4 + 1/3 · 1/4 = 1/3,
pY (2) = 1/6.
d. A mapping that satisfies the requirement is

00 → 0

01 → 0

10 → 0

11 → 1.

P2 (2 points) Consider a horse race with four horses with winning probabilities p = {1/8, 1/8, 1/4, 1/2}.
The odds fair with respect to the uniform distribution r = {1/4, 1/4, 1/4, 1/4}. You start
with $1.
a. Consider the betting strategy b = {1/4, 1/4, 1/4, 1/4}. What is the (long-term) doubling
rate of this strategy? Approximately, how much money you would have after 100 races?
b. What is the optimal betting strategy b1, b2, b3, b4 that maximizes the (long-term) doubling
rate? Find the corresponding doubling rate. Approximately, how much money you would
have after 100 races?

Sol.: a. The doubling rate is

W = D(p||r)−D(p||b)
=

X
k

pk log2

µ
bk
rk

¶
= 0,

therefore the amount of money after 100 races is about

Sn ' $1 · 2nW = $1.

b. The optimal betting strategy is b = p. This leads to the doubling rate

W ∗ = D(p||r)
= 1/4

so that

Sn ' $1 · 2 1004
= $33554432.

P3 (2 points) Consider the additive Gaussian noise channel

Yi = Xi + Zi,

where we have power constraint on Xn equal to P = 3. The noise Zn has independent
Gaussian samples but with possibly non-zero and time-varying mean.
a. Assume that Zi ∼ N

¡
1
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, 1
¢
and find the capacity.

b. Assume that Zi ∼ N (Qi, 1) with Qi being a random variable with Qi ∼ N (0, 2). Find
the capacity.
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c. For the scenario at point a, consider the transmission of an i.i.d. Gaussian process V n with
Vi ∼ N (0, 1) . Can we construct a source-channel coding scheme that enables transmission
at MSE equal to 0.75?
d. Repeat the point above with MSE equal to 0.2.

Sol.: a. By evaluating the mutual information, one obtains C = 1/2 log2(1 + 3) = 1.
b. We can write

Zi = Qi + Ui,

where Ui ∼ N (0, 1) and independent of Qi. Therefore, Zi ∼ N (0, 3) and C = 1/2 log2(1 +
3/3) = 1/2.
c. We know that this is possible if and only if

R(D) =
1

2
log2

1

D
≤ C = 1.

Therefore, D = 0.75 is feasible since R(0.75) = 0.2.
d. This is instead not possible since R(0.2) = 1.16.
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