Random signal analysis I (ECE673)
 Assignment 5

The due date for this assignment is Wednesday Oct. 11
Please provide detailed answers.

1. Calculate the PDF of $Y=\exp (X)$ where $X \sim \mathcal{U}(0,1)$. Moreover, evaluate the average and variance of Y.
Solution: The range of Y is

$$
\mathcal{S}_{Y}=\{y: 1 \leq y \leq e\} .
$$

Moreover, the tranformation $g(x)=\exp (x)$ is clearly one-to-one (monotonically increasing). Therefore we can write

$$
\begin{aligned}
p_{Y}(y) & =p_{X}\left(g^{-1}(y)\right)\left|\frac{\partial g^{-1}(y)}{\partial y}\right|=p_{X}(\log y)\left|\frac{\partial \log y}{\partial y}\right|= \\
& =p_{X}(\log y) \frac{1}{y}
\end{aligned}
$$

But the PDF of X reads

$$
p_{X}(x)=\left\{\begin{array}{ll}
1 & 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array},\right.
$$

thus the PDF of Y is

$$
p_{Y}(y)=\left\{\begin{array}{cl}
1 / y & 1 \leq y \leq e \\
0 & \text { elsewhere }
\end{array},\right.
$$

where $e=\exp (1)$, which is approximately 2.72 . We have to check that $p_{Y}(y)$ is a PDF:

$$
\int_{-\infty}^{\infty} p_{Y}(y) d y=\int_{1}^{e} \frac{1}{y} d y=[\log y]_{1}^{e}=1
$$

The average of Y can be obtained according to the definition

$$
E[Y]=\int_{-\infty}^{\infty} y p_{Y}(y) d y=\int_{1}^{e} d y=e-1=1.72
$$

or equivalently

$$
E[Y]=\int_{-\infty}^{\infty} \exp (x) p_{X}(x) d x=\int_{0}^{1} \exp (x) d x=e-1=1.72 .
$$

The variance is $\operatorname{var}(Y)=E\left[Y^{2}\right]-E[Y]^{2}$, where

$$
E\left[Y^{2}\right]=\int_{-\infty}^{\infty} y^{2} p_{Y}(y) d y=\int_{1}^{e} y d y=\left.\frac{1}{2} y^{2}\right|_{1} ^{e}=\frac{1}{2}\left(e^{2}-1\right)=3.2
$$

so that

$$
\operatorname{var}(Y)=E\left[Y^{2}\right]-E[Y]^{2}=3.2-(1.72)^{2}=0.24
$$

2. Following the previous problem, estimate (i) the PDF of Y (i.e.,evaluate the histogram); (ii) the average $E[Y]$; (iii) the variance $\operatorname{var}(Y)$ using MATLAB and compare your result with your answers at the previous point. Please include your MATLAB code and the obtained plot and outcomes.
Solution: A possible solution in MATLAB is as follows:
$\mathrm{N}=10000$; \%number of Monte Carlo iterations
$\mathrm{dy}=0.05$; $\quad \%$ step size
bincenters $=[-1: d y: \exp (1)+1]$; \%bin centers used to calculate the histograms
bins=length(bincenters); \%number of bins
$\mathrm{h}=\mathrm{zeros}(\mathrm{bins}, 1)$; \%initializing the variable that counts the number of realizations falling in each bin
$\mathrm{Ey}=0 ; \quad$ \%initializing the estimate of Y
$\mathrm{Ey} 2=0 ;$ \%initializing the estimate of Y^{2}
for $\mathrm{i}=1: \mathrm{N} \quad$ \%for each Monte Carlo iteration
$\mathrm{x}=\operatorname{rand}(1) ; \mathrm{y}=\exp (\mathrm{x})$;
for $\mathrm{k}=1$:bins \quad ofor each bin
if $(\mathrm{y}>(\operatorname{bincenters}(\mathrm{k})-\mathrm{dy} / 2)) \&(\mathrm{y}<=$ bincenters $(\mathrm{k})+\mathrm{dy} / 2)$
$\mathrm{h}(\mathrm{k})=\mathrm{h}(\mathrm{k})+1$;
end \%if
end \%for
$\mathrm{Ey}=\mathrm{Ey}+\mathrm{y}$;
$\mathrm{Ey} 2=\mathrm{Ey} 2+\mathrm{y}^{\wedge} 2$;
end \%for
pyest $=\mathrm{h} /\left(\mathrm{N}^{*} \mathrm{dy}\right)$; \%calculate the histogram
\%plotting the results
stem(bincenters,pyest); xlabel('y'); ylabel('p_Y(y)');
hold on;
$\mathrm{z}=[1: 0.001: \exp (1)]$;
plot(z,1./z,'-');
$\mathrm{Ey}=\mathrm{Ey} / \mathrm{N}$ \%calculate the average
$\mathrm{Ey} 2=\mathrm{Ey} 2 / \mathrm{N} ; \%$ calculate the average of the power of Y
vary $=\mathrm{Ey} 2-\mathrm{Ey}{ }^{\wedge} 2$
My outcome is shown in the figure.
and my numerical values are
Ey =
1.7252
vary $=$
0.2442
3. The signal-to-noise ratio (SNR) of a given measurement defines its accuracy. If X is a random variable modelling the measurement, the SNR is defined as $E[X]^{2} / \operatorname{var}(X)$ and is seen to increase as the mean (which represents the true value to be measured) increases and/or the variance (which represents the power of the measurement error $X-E[X]$) decreases. (i)

Figure 1:

Determine the SNR if the measurement is $X=A+U$ where A is the true value (a constant) to be measured and U model the measurement error with $U \sim \mathcal{U}(-1 / 2,1 / 2)$. (ii) In order to have a SNR of 1000 what should A be? (iii) Say now that the measurement X is modelled by an exponential random variable (the true value to be measured is the mean $1 / \lambda$). Explain why the SNR does not increase as the mean increases.
Solution: (i) The SNR reads

$$
\begin{aligned}
S N R & =\frac{E[X]^{2}}{\operatorname{var}(X)}=\frac{(A+E[U])^{2}}{\operatorname{var}(A+U)}=\frac{A^{2}}{\operatorname{var}(U)}= \\
& =\frac{A^{2}}{1 / 12}=12 A^{2} .
\end{aligned}
$$

(ii) Let us impose the required condition and solve for A

$$
S N R=12 A^{2}=1000 \rightarrow A=9.12
$$

(iii) If $X \sim \exp (\lambda)$, then

$$
S N R=\frac{E[X]^{2}}{\operatorname{var}(X)}=\frac{(1 / \lambda)^{2}}{1 / \lambda^{2}}=1
$$

Therefore, since the variance is equal to the square of the mean, a measurement modelled as an exponential random variable presents a SNR always equal to 1 .

