Random signl analysis I (ECE673)
 Solution assignment 7

1) (i) Given the independent random variables $X_{1} \sim \operatorname{Ber}(0.3)$ and $X_{2} \sim \operatorname{Ber}(0.6)$, evaluate the mean vector and covariance matrix of the transformed random vector

$$
\mathbf{Y}=\left[\begin{array}{c}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{c}
X_{1}+X_{2} \\
X_{2}
\end{array}\right]
$$

(ii) Write a MATLAB program that estimates mean vector and covariance matrix of \mathbf{Y} from Monte Carlo simulations. Compare the simulation results with the analysis performed at point (i). Please include the MATLAB code and numerical outcome.
Solution: (i) The mean vector reads

$$
E[\mathbf{Y}]=\left[\begin{array}{c}
E\left[X_{1}\right]+\left[X_{2}\right] \\
E\left[X_{2}\right]
\end{array}\right]=\left[\begin{array}{c}
0.3+0.6 \\
0.6
\end{array}\right]=\left[\begin{array}{c}
0.9 \\
0.6
\end{array}\right],
$$

whereas the covariance matrix can be evaluated as follows:

$$
\begin{aligned}
\operatorname{var}\left(Y_{1}\right) & =\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)=0.3 \cdot 0.7+0.6 \cdot 0.4=0.45 \\
\operatorname{var}\left(Y_{2}\right) & =\operatorname{var}\left(X_{2}\right)=0.6 \cdot 0.4=0.24 \\
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & =E\left[\left(Y_{1}-E\left[Y_{1}\right]\right)\left(Y_{2}-E\left[Y_{2}\right]\right)\right]=E\left[\left(X_{1}-E\left[X_{1}\right]+X_{2}-E\left[X_{2}\right]\right)\left(X_{2}-E\left[X_{2}\right]\right)\right]= \\
& =E\left[\left(X_{1}-E\left[X_{1}\right]\right)\left(X_{2}-E\left[X_{2}\right]\right)\right]+E\left[\left(X_{2}-E\left[X_{2}\right]\right)\left(X_{2}-E\left[X_{2}\right]\right)\right]= \\
& =\operatorname{cov}\left(X_{1}, X_{2}\right)+\operatorname{var}\left(X_{2}\right)=0+0.24=0.24,
\end{aligned}
$$

therefore

$$
\mathbf{C}_{\mathbf{Y}}=\left[\begin{array}{cc}
\operatorname{var}\left(Y_{1}\right) & \operatorname{cov}\left(Y_{1}, Y_{2}\right) \\
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & \operatorname{var}\left(Y_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
0.45 & 0.24 \\
0.24 & 0.24
\end{array}\right]
$$

(ii) A possible MATLAB program to estiamate mean and covariance is as follows:
$\mathrm{N}=100000$; \%Monte Carlo iterations
p1=0.3; \%Bernoulli parameters p
$\mathrm{p} 2=0.6$;
$\mathrm{Y}=$ zeros $(2, \mathrm{~N})$;
for $\mathrm{i}=1: \mathrm{N}$
$\mathrm{U}=\operatorname{rand}(2,1)$; \%uniform variables for the inverse probability integral method
if $(\mathrm{U}(1)>1-\mathrm{p} 1) \mathrm{X}(1)=1$; else $\mathrm{X}(1)=0$; end
if $(\mathrm{U}(2)>1-\mathrm{p} 2) \mathrm{X}(2)=1$; else $\mathrm{X}(2)=0$; end
$\mathrm{Y}(1, \mathrm{i})=\mathrm{X}(1)+\mathrm{X}(2)$;
$\mathrm{Y}(2, \mathrm{i})=\mathrm{X}(2)$;
end
$\mathrm{EY}=$ zeros(2,1);
for $\mathrm{j}=1: \mathrm{N}$
$E Y=E Y+Y(:, j) ;$
end
$E Y=1 / N^{*} E Y$
$\mathrm{CY}=\operatorname{zeros}(2)$;
for $\mathrm{j}=1: \mathrm{N}$
$\mathrm{CY}=\mathrm{CY}+(\mathrm{Y}(:, \mathrm{j})-\mathrm{EY})^{*}(\mathrm{Y}(:, \mathrm{j})-\mathrm{EY})^{\prime} ;$
end
$\mathrm{CY}=1 / \mathrm{N}^{*} \mathrm{CY}$
The numerical outcome for the given realizations are:
$\mathrm{EY}=$
0.9040
0.6026

CY =
0.44880 .2388
0.23880 .2395 .
2) Two lightbulbs have times to failure described by random variables X and Y (measured in months) respectively with joint PDF

$$
p_{X, Y}(x, y)=10^{-4} \exp [-0.01(x+y)] u(x) u(y)
$$

where it is recalled that $u(x)$ is the step function $(u(x)=1$ for $x \geq 0$ and $u(x)=0$ for $x<0)$. (i) Evaluate the marginal PDFs of X and Y. Are they independent? (ii) Calculate the mean vector $E[\mathbf{Z}]$ with $\mathbf{Z}=\left[\begin{array}{l}X \\ Y\end{array}\right]$ and the covariance matrix $\mathbf{C}_{\mathbf{Z}}$. (iii) Evaluate the probability that both lightbulbs fail before 50 months.
Solution: (i) The marginal PDF for X is calculated as

$$
\begin{aligned}
p_{X}(x) & =\int_{-\infty}^{+\infty} p_{X, Y}(x, y) d y=\int_{-\infty}^{+\infty} 0.0001 \exp [-0.01(x+y)] u(x) u(y) d y= \\
& =0.01 \exp [-0.01 x] u(x) \int_{-\infty}^{+\infty} 0.01 \exp [-0.01 y] u(y) d y= \\
& =0.01 \exp [-0.01 x] u(x)
\end{aligned}
$$

where the last equality follows from the fact that $\lambda \exp (-\lambda y)$ inside the integral $(\lambda=0.01)$ is an exponential PDF. It follows that $X \sim \exp (0.01)$ and, similiarly $Y \sim \exp (0.01)$. Since $p_{X, Y}(x, y)=p_{X}(y) p_{Y}(y), X$ and Y are independent.
(ii) The mean vector reads

$$
E[\mathbf{Z}]=\left[\begin{array}{c}
E[X] \\
E[Y]
\end{array}\right]=\left[\begin{array}{l}
100 \\
100
\end{array}\right]
$$

and the coviariance matrix is diagonal since the variables are independent and

$$
\mathbf{C}_{Z}=\left[\begin{array}{cc}
\operatorname{var}(X) & 0 \\
0 & \operatorname{var}(Y)
\end{array}\right]=\left[\begin{array}{cc}
10000 & 0 \\
0 & 10000
\end{array}\right] .
$$

(iii) The requested probability is

$$
\begin{aligned}
P[X & \leq 50, Y \leq 50]=\int_{-\infty}^{50} \int_{-\infty}^{50} p_{X, Y}(x, y) d x d y=\int_{-\infty}^{50} p_{X}(x) d x \int_{-\infty}^{50} p_{Y}(y) d y= \\
& =F_{X}(50) F_{Y}(50)=\left(1-e^{-0.01 \cdot 50}\right)^{2}=0.15
\end{aligned}
$$

3) The amplitudes of two voice signals (X_{1} and X_{2}) are modelled as bivariate jointly Gaussian variables (measured in Volt) with zero mean, variance 1 and correlation coefficient $\rho=0.8$. (i) Plot the joint PDF using MATLAB. In particular, show both the tri-dimensional plot (using the command mesh) and the countour lines (using the command contour). (ii) Evaluate the probability that the amplitude of the second signal is larger than the first by 1 Volt ($P\left[X_{2}-X_{1}>1\right]$).
Solution: (i) In order to plot the standard bivariate Gaussian variables X_{1} and X_{2} we can use the following code
x1=
$\mathrm{x} 2=$
$[\mathrm{X} 1, \mathrm{X} 2]=\operatorname{meshgrid}(\mathrm{x} 1, \mathrm{x} 2)$;
$\mathrm{P}=1 /$
mesh(X1,X2,P); \%for the tri-dimensional plot
figure; \%creates a new figure
(ii) The requested probability can be written as

$$
P\left[X_{2}-X_{1}>1\right]
$$

but $X_{2}-X_{1}$ is known to be a Gaussian variable (linear combination of random variables), whose mean and variance can be determined as follows

$$
\begin{aligned}
E\left[X_{2}-X_{1}\right] & =0-0=0 \\
\operatorname{var}\left(X_{2}-X_{1}\right) & =\operatorname{var}\left(X_{2}\right)+\operatorname{var}\left(-X_{1}\right)+2 \operatorname{cov}\left(X_{2},-X_{1}\right)= \\
& =1+1-2 \rho=0.4
\end{aligned}
$$

Therefore, we can write

$$
X_{2}-X_{1}=\sqrt{0.4} Z
$$

where $Z \sim \mathcal{N}(0,1)$. It follows that

$$
P\left[X_{2}-X_{1}>1\right]=P[Z>1 / \sqrt{0.4}]=Q(1 / \sqrt{0.4})=0.0569
$$

where the $Q(x)$ function has been evaluated with MATLAB using the command $1 / 2^{*} \operatorname{erfc}(\mathrm{x} / \mathrm{sqrt}(2))$.
4) The voice signals defined in the previous point are passed through an amplifier that accepts a maximum signal level of 2.5 (i.e., the dynamic range of the amplifier is $[-2.5,2.5]$). Knowing that $X_{2}=2$, what is the probability that X_{1} is outside the dynamic range of the amplifier?
Solution: Since the event $X_{2}=2$ is known, we need to consider the conditional PDF $p_{X_{1} \mid X_{2}}\left(x_{1} \mid 2\right)$. We known that for standard bivariate Gaussian variables, the conditional PDF $p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)$ is Gaussian with mean ρx_{2} and variance $1-\rho^{2}$, therefore we have

$$
X_{1} \mid\left(X_{2}=2\right) \sim \mathcal{N}\left(2 \cdot 0.8,1-(0.8)^{2}\right) \sim \mathcal{N}(1.6,0.36)
$$

which implies

$$
\left\{X_{1} \mid\left(X_{2}=2\right)\right\}=1.6+\sqrt{0.36} Z
$$

where $Z \sim \mathcal{N}(0,1)$. Therefore the requested probability reads

$$
\begin{aligned}
P\left[\left|X_{1}\right|\right. & \left.>2.5 \mid X_{2}=2\right]=P\left[X_{1}>2.5 \mid X_{2}=2\right]+P\left[X_{1}<-2.5 \mid X_{2}=2\right]= \\
& =P[1.6+\sqrt{0.36} Z>2.5]+P[1.6+\sqrt{0.36} Z<-2.5]= \\
& =P[Z>0.9 / \sqrt{0.36}]+P[Z<-4.1 / \sqrt{0.36}]= \\
& =P[Z>1.5]+P[Z<-6.8]=Q(1.5)+1-Q(-6.8)= \\
& =Q(1.5)+Q(6.8)=0.067+5 \cdot 10^{-12}=0.067 .
\end{aligned}
$$

