## ECE 232 - Circuits and Systems II Midterm

Please provide clear and complete answers. Don't forget to specify the units of measure!

**Q1.** (1 point) Plot the function  $v(t) = 4e^{-2000t} \sin(2\pi \cdot 1000t)$  [V] for  $0 \le t \le 2.5 ms$ .

Sol.: The time constant of the exponential term is  $1/2000 = 0.5 \ ms$  and the period of the sinusoid is  $1/1000 = 1 \ ms$ .



Figure 1:

Q2. (1 point) Calculate the Laplace transform of

$$f(t) = 2 \cdot (t-1) \cdot e^{-20(t-1)} u(t-1).$$

(Hint: Start with the Laplace transform of  $te^{-20t}u(t)$ )

Sol: We know that

$$\mathcal{L}(e^{-20t}u(t)) = \frac{1}{s+20},$$

so that

$$\mathcal{L}(2te^{-20t}u(t)) = 2\frac{d}{ds}\left(\frac{1}{s+20}\right) = \frac{2}{(s+20)^2}$$

We finally have

$$\mathcal{L}(2 \cdot (t-1) \cdot e^{-20(t-1)}u(t-1)) = e^{-s} \frac{2}{(s+20)^2}$$

**P1.** (4 points) Consider the circuit in the figure below. Assume that for t < 0 switch 1 is closed and switch 2 open and that the circuit has been in this configuration for a long time. a. Calculate  $v_c(t)$  for  $0 \le t < 8ms$ . In this interval of time, switch 1 and 2 are open. b. Calculate  $v_c(t)$  for  $t \ge 8ms$ . In this interval of time, switch 1 is open and 2 closed.



## Figure 2:

c. Calculate the initial energy available in the capacitor and the fraction of such energy dissipated by the resistors in the interval  $0 \le t < 8ms$ .

d. Double check your result at the previous point by calculating the energy remaining on the capacitor at time t = 8ms. Explain.

Sol.: a. We have

$$v_c(0) = 2 \cdot 10^3 \cdot \frac{2}{6} 10^{-3} = \frac{2}{3} \text{ V}.$$

Moreover, for  $0 \le t < 8ms$ , the circuit is RC with  $\tau = RC = 2 \cdot 10^3 \cdot 2 \cdot 10^{-6} = 4$  ms. Therefore, we have

$$v_c(t) = \frac{2}{3}e^{-250t}.$$

b. For  $t \ge 8ms$ , the circuit is RC with  $R = 2 \cdot 4/6 = 4/3 \ k\Omega$ , so that  $\tau = 8/3ms$ , and a source of 1 mA. Moreover, we can calculate

$$v_c(8 \cdot 10^{-3}) = \frac{2}{3}e^{-2} = 0.09 \text{ V}$$

and

$$v_c(\infty) = \frac{4}{3} \cdot 10^3 \cdot 10^{-3} = \frac{4}{3} \text{ V.}$$

Finally, we obtain

$$v_c(t) = \frac{4}{3} + \left(0.09 - \frac{4}{3}\right) e^{-\frac{3000}{8}(t - 8 \cdot 10^{-3})}$$
$$= \frac{4}{3} - 1.24 e^{-375(t - 8 \cdot 10^{-3})}.$$

c. Initial energy available in the capacitor:

$$\frac{1}{2}Cv_c(0)^2 = \frac{1}{2}2 \cdot 10^{-6} \cdot \frac{4}{9} = \frac{4}{9} \cdot 10^{-6} \text{ J.}$$

Energy dissipated by the  $2k\Omega$  resistor connected to the capacitor in the interval  $0 \le t < 8ms$ 

$$\int_{0}^{8 \cdot 10^{-3}} \frac{v_c(t)^2}{2000} dt = \frac{2}{9000} \int_{0}^{8 \cdot 10^{-3}} e^{-500t} dt$$

$$= \frac{2}{9000 \cdot (-500)} (e^{-500 \cdot 8 \cdot 10^{-3}} - 1)$$

$$= 4.36 \cdot 10^{-7},$$



Figure 3:

which is a fraction

$$\frac{4.36 \cdot 10^{-7}}{\frac{4}{9} \cdot 10^{-6}} \cdot 100 = 98.1\%.$$

d. The energy remaining in the capacitor is

$$\frac{1}{2}Cv_c(\infty)^2,$$

which can be seen to be around 1.9% of the initial energy.

**P2.** (4 points) In the circuit in the figure below, no energy is initially stored in inductor and capacitor.

a. Calculate the roots of the characteristic equation and determine the regime.

b. Find  $v_C(0)$  and  $\frac{dv_C(0^+)}{dt}$ . c. Find  $v_C(t)$  for  $t \ge 0$ . d. Find i(t) for  $t \ge 0$ .

Sol.: a. We have

$$\alpha = \frac{R}{2L} = \frac{2.5 \cdot 10^3}{2 \cdot 0.2} = \frac{2.5 \cdot 10^3}{0.4} = 6.25 \cdot 10^3 \text{ rad/s}$$
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.2 \cdot 0.2 \cdot 10^{-6}}} = \frac{1}{\sqrt{4 \cdot 10^{-8}}} = 5 \cdot 10^3 \text{ rad/s}$$

so we are in the overdamped regime. The roots are

$$s_1 = -6.25 \cdot 10^3 + 10^3 \sqrt{6.25^2 - 5^2}$$
  
= -6.25 \cdot 10^3 + 3.75 \cdot 10^3 = -2500  
$$s_2 = -6250 - 3750 = -10000.$$

b.

$$\begin{array}{rcl}
 v_C(0) &=& 0 \ \mathrm{V} \\
 \frac{dv_C(0^+)}{dt} &=& \frac{1}{C} i_C(0^+) = 0 \ \mathrm{V/s},
 \end{array}$$

since the initially stored energy is zero.

c. From the general formula for the overdamped regime, we have

$$v_C(t) = v_C(\infty) + A_1 e^{-2500t} + A_2 e^{-10000t}$$
 V,  $t \ge 0$ 

where

$$v_C(\infty) = 10 \text{ V},$$

and imposing the initial conditions, we get

$$10 + A_1 + A_2 = 0$$
  
-2500A\_1 - 10000A\_2 = 0,

and

$$A_1 = -40/3$$
  
 $A_2 = 10/3,$ 

so that

$$v_C(t) = 10 - \frac{40}{3}e^{-2500t} + \frac{10}{3}e^{-10000t}$$
 V,  $t \ge 0$ 

d. From the general formula for the underdamped regime, we have

$$i(t) = A_1 e^{-2500t} + A_2 e^{-10000t}$$
 A,  $t \ge 0$ 

and imposing the initial conditions

$$A_1 + A_2 = i(0) = 0$$
  
-2500B<sub>1</sub> - 10000A<sub>2</sub> =  $\frac{di(0^+)}{dt} = \frac{1}{L}v_L(0^+) = \frac{1}{0.2}10 = 50,$ 

and

$$A_1 = 2/3 \cdot 10^{-3} A_2 = -2/3 \cdot 10^{-3},$$

so that

$$i(t) = \frac{2}{3}e^{-2500t} - \frac{2}{3}e^{-10000t} \ mA, \ t \ge 0.$$