ECE 232-Circuits and Systems II
 Midterm

Please provide clear and complete answers. Don't forget to specify the units of measure!

1. (2 point) Calculate the Laplace transform of

$$
f(t)=2 e^{-20(t-1)} \cos (10(t-1)) u(t-1)
$$

starting from the Laplace transform of $\cos (10 t) u(t)$ and then applying some of the properties of the Laplace transform (which ones? please detail all the steps).
2. (2 point) Consider the parallel of an inductor $L=1 H$ and a capactior $C=1 F$. Assume that the initial energy in the capacitor is zero, while the energy in the inductor is $0.5 J$ (choose any direction you want for the current). Find the voltage $v(t)$ for $t \geq 0$ (Hint: It is a parallel RLC circuit with infinite resistance).

3. (4 points) Consider the circuit in figure 1. Switch a opens at time $t=0$, after having being closed for a long time, while switch b closes at time $t=8 \mathrm{~ms}$.
a. Calculate $v_{1}(0)$ and $v_{2}(0)$.
b. Calculate $v_{1}(t)$ and $v_{2}(t)$ for $0 \leq t \leq 8 \mathrm{~ms}$
c. Calculate $v_{1}(t)$ and $v_{2}(t)$ for $t \geq 8 \mathrm{~ms}$.
d. Which percentage of the initial energy in the 1 mF capacitor is dissipated in the interval $0 \leq t \leq 8 m s$?
4. (4 points) In the circuit illustrated in figure 2 the switch stays in position a for a long time and then moves to position b at time $t=0$.
a. Calculate $v_{C}\left(0^{-}\right), v_{C}\left(0^{+}\right)$and $\frac{d v_{C}\left(0^{+}\right)}{d t}$, where $v_{C}(t)$ is the voltage across the capacitor as shown in the figure.
b. Calculate $v_{C}(t)$ for $t \geq 0$.
c. Calculate $v_{O}\left(0^{-}\right), v_{O}\left(0^{+}\right)$and $\frac{d v_{O}\left(0^{+}\right)}{d t}$, where $v_{O}(t)$ is the voltage over the capacitor and the resistors in parallel as shown in the figure.
d. Calculate $v_{O}(t)$ for $t \geq 0^{+}$.

Sol.:

1. We know that

$$
\mathcal{L}(\cos (10 t) u(t))=\frac{s}{s^{2}+100} .
$$

Now, using the multiplication by a constant and multiplication by an exponential properties, we get

$$
\begin{aligned}
\mathcal{L}\left(2 e^{-20 t} \cos (10 t) u(t)\right) & =2 \frac{s+20}{(s+20)^{2}+100} \\
& =2 \frac{s+20}{s^{2}+40 s+500}
\end{aligned}
$$

We conclude by using the delay property

$$
\mathcal{L}\left(2 e^{-20(t-1)} \cos (10(t-1)) u(t-1)\right)=2 e^{-s} \frac{s+20}{s^{2}+40 s+500}
$$

2. Since R is infinity, we have $\alpha=\frac{1}{2 R C}=0$. Moreover, since $\omega_{0}=1 \mathrm{rad} / \mathrm{s}$, we are in the underdamped regime and

$$
v(t)=B_{1} \cos t+B_{2} \sin t
$$

Imposing the initial conditions, we have

$$
\begin{aligned}
v(0) & =0 \rightarrow B_{1}=0 \\
\frac{d v\left(0^{+}\right)}{d t} & =\frac{1}{C} i\left(0^{+}\right)=1 \rightarrow B_{2}=1
\end{aligned}
$$

In fact, the initial current follows from $\frac{1}{2} \operatorname{Li}\left(0^{+}\right)^{2}=\frac{1}{2}$. In the second condition, we have taken the direction of the current so that it flows from the + to the - terminal on the capacitor. Overall, we have

$$
v(t)=\sin t \text { for } t \geq 0
$$

3.

a. From the voltage division rule, we have

$$
\begin{aligned}
v_{1}(0) & =-7 \frac{2}{1+2+4}=-2 \mathrm{~V} \\
\text { and } v_{2}(0) & =-7 \frac{4}{1+2+4}=-4 \mathrm{~V}
\end{aligned}
$$

b. For $0 \leq t \leq 8 \mathrm{~ms}$, we have to separate RC circuits. In fact, from Kirchhoff current law, the current that flows over the 1 mF capacitor is the same as over the 2Ω resistor and similarly for the 2 mF capacitor and the 4Ω resistor. The two time constants are

$$
\begin{aligned}
\tau_{1} & =2 \mathrm{~ms} \\
\text { and } \tau_{2} & =8 \mathrm{~ms}
\end{aligned}
$$

so that we have

$$
\begin{aligned}
v_{1}(t) & =-2 e^{-500 t} \mathrm{~V} \\
\text { and } v_{2}(t) & =-4 e^{-125 t} \mathrm{~V}
\end{aligned}
$$

for $0 \leq t \leq 8 \mathrm{~ms}$.
c. In the interval $t \geq 8 \mathrm{~ms}$, the first RC circuit does not change so that

$$
v_{1}(t)=-2 e^{-500 t} \mathrm{~V}
$$

also for $t \geq 8 \mathrm{~ms}$.
Instead, for the second RC circuit, by continuity of the voltage over capacitors, we have

$$
v_{2}(8 m s)=-4 e^{-1}=-1.47 \mathrm{~V}
$$

and the time constant is

$$
\tau_{2}=4 \mathrm{~ms}
$$

since the equivalent resistance is $4 \| 4 \Omega=2 \Omega$. We can conclude that

$$
v_{2}(t)=-1.47 e^{-250\left(t-8 \cdot 10^{-3}\right)} V
$$

for $t \geq 8 \mathrm{~ms}$.
d. The initial energy is

$$
E_{1}(0)=\frac{1}{2} 10^{-3}(-2)^{2}=2 \mathrm{~mJ}
$$

while the energy at $t=8 \mathrm{~ms}$ is given almost zero since $8 \mathrm{~ms}=4 \tau_{1}$. Therefore, the percentage dissipated is very close to 100%. Precisely, we have

$$
E_{1}(8 m s)=\frac{1}{2} 10^{-3}\left(-2 e^{-500 \cdot 8 \cdot 10^{-3}}\right)^{2}=0.67 \mu J
$$

so that the percentage dissipated is

$$
\frac{E_{1}(0)-E_{1}(8 m s)}{E_{1}(0)}=99.9 \%
$$

4.

a. For $t=0^{-}$, we can evaluate the current flowing in the inductor, with direction from the 16Ω to the 2Ω resistor as

$$
i_{L}\left(0^{-}\right)=\frac{30}{18}=\frac{5}{3}=1.67 \mathrm{~A},
$$

since we have an equivalent source of 30 V . It follows that

$$
\begin{aligned}
v_{C}\left(0^{-}\right) & =v_{C}\left(0^{+}\right)=v_{C}(0)=-20+2 \cdot 1.67 \\
& =-16.67 \mathrm{~V}
\end{aligned}
$$

(you can also calculate it as $10-16 \cdot 1.67=-16.72 \mathrm{~V}$).
Moreover, after the switch has moved to position b, we can calculate

$$
\frac{d v_{C}\left(0^{+}\right)}{d t}=\frac{1}{C} i_{L}\left(0^{+}\right)=16000 \cdot 1.67=26,720 \mathrm{~A} / \mathrm{s}
$$

b. We have a series RLC circuit with

$$
\alpha=\frac{R}{2 L}=\frac{8}{2 \cdot 4 \cdot 10^{-3}}=1000 \mathrm{rad} / \mathrm{s}
$$

and

$$
\omega_{0}=\frac{1}{\sqrt{4 \cdot 10^{-3} \cdot \frac{1}{16} \cdot 10^{-3}}}=2000 \mathrm{rad} / \mathrm{s}
$$

so that $\omega_{d}=\sqrt{2000^{2}-1000^{2}}=1732.1 \mathrm{rad} / \mathrm{s}$. We are then in the underdamped regime. It follows that

$$
v_{C}(t)=B_{1} e^{-1000 t} \cos (1732.1 t)+B_{2} e^{-1000 t} \sin (1732.1 t)+10 V
$$

Imposing the initial conditions

$$
\begin{aligned}
B_{1}+10 & =-16.67 \\
-1000 B_{1}+1732.1 B_{2} & =26720 \\
& \rightarrow B_{2}=0.03
\end{aligned}
$$

we get

$$
v_{C}(t)=-26.67 e^{-1000 t} \cos (1732.1 t)+0.03 e^{-1000 t} \sin (1732.1 t) .
$$

c. For $t=0^{-}$, we have

$$
\begin{aligned}
v_{O}\left(0^{-}\right) & =v_{C}\left(0^{-}\right)+8 \cdot 1.67 \\
& =-16.67+8 \cdot 1.67 \\
& =-3.31 \mathrm{~V}
\end{aligned}
$$

whereas for $t=0^{+}$, we have

$$
\begin{aligned}
v_{O}\left(0^{+}\right) & =v_{C}\left(0^{+}\right)+16 \cdot 1.67 \\
& =-16.67+16 \cdot 1.67 \\
& =10.05 \mathrm{~V}
\end{aligned}
$$

To obtain $\frac{d v_{O}\left(0^{+}\right)}{d t}$, we can differentiate the expression for $v_{O}(t)$ obtained at the following point.
d. For $t \geq 0^{+}$, we calculate

$$
v_{O}(t)=v_{C}(t)+8 \cdot i(t)
$$

where $i(t)$ is the current flowing in the RLC circuit (in the direction from the inductor to the capacitor). This can be calculated for instance by differentiating the voltage $v_{C}(t)$. We do not further detail this point here.

