
ECE 755 - Digital communications
Midterm

Please provide clear and complete answers.

PART I: Questions -

Q.1. (1 point) A complex white Gaussian noise W (t) with power per dimension σ2 = No/2
is passed through a filter matched to the waveform h(t) = e−tu(t) (u(t) is the unit-step
function, u(t) = 1 for t ≥ 0 and u(t) = 0 otherwise) and is sampled at rate 1/T. Define as
N(t) the output of the filter. Find the autocorrelation ρN(m) = E[N∗

kNk+m] of the samples
Nk = N(kT ) [Optional: find the power spectral density].

Sol.: We have

Nk =< W (t), h(t− kT ) >=

Z
W (t)h(t− kT )dt,

which implies

ρN(m) = E[N∗
kNk+m] =

Z Z
E[W ∗(t)W (τ)]h(t− kT )h(τ − (k +m)T )dt =

=

Z Z
Noδ(t− τ)h(t− kT )h(τ − (k +m)T )dt =

= No

Z
h(t− kT )h(t− (k +m)T )dt = Noρh(m),

where

ρh(m) =

Z
h(t)h(t−mT )dt =

Z
h(t)h(t+mT )dt =

=
m>0

Z ∞

0

e−te−(t+mT )dt =
m>0

e−τ
Z ∞

0

e−2tdt =
m>0

1

2
e−mT

so that by symmetry

ρh(m) =
1

2
e−|m|T → ρN(m) =

No

2
e−|m|T .

Taking the z-transform and defining α = e−T , we obtain the power spectral density:

SN(z) =
1

2

(1− α2)

(1− αz−1)(1− αz)
.

Q.2. (1 point) The design of a radio communication system requires transmission of Rb =
6Mb/s over a bandwidth of W = 2MHz around a carrier frequency of fc = 2GHz. Further
specifications fix the constellation to be M-QAM and the roll-off factor α = 0.3. Find
the minimum required M and the corresponding symbol rate. Also, what is the minimum
SNR E/No required for communications? Finally, what does it change if the system is
implemented in baseband with a M-PAM constellation?
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Sol.: The required spectral efficiency is

ν =
Rb

W
= 3 bit/s/Hz.

The required number of bits/ 2-dim is then

ρ = ν(1 + α) = 3 · 1.3 = 3.9 bit/2-dim,
the symbol rate:

1

T
=

W

1 + α
= 1.54 Mbaud

and the constellation size satisfies

|A| ≥ 2ρ = 15→ 16-QAM.

The minimum E/No required for communications is

E

No
= 2ρ − 1 = 11.5dB.

If the system is in base-band, the constellation size becomes

|A| ≥ 2ρ/2 = 3.8→ 4-PAM,

the symbol rate is
1

T
=

2W

1 + α
= 3.08 Mbaud

while the minimum energy remains the same.

Q.3. (1 point) Given two possible sequences a0 = [−1 1 1] and a00 = [1 −1 1] observed over
an AWGN channel with noise power per dimension σ2 = No/2 = 0.1, evaluate the likelihoods
for a0 and a00 given the received signal samples y = [1.3 −0.6 0.8] (you can neglect inessential
multiplicative constants). Also, evaluate the ratio of the two likelihoods. Then assume that a
priori probabilities for the sequences are p(a0) = 0.8 and p(a00) = 0.2, and find the a posteriori
probabilities of a0 and a00 given the same y (again, you can neglect inessential multiplicative
constants), and the their ratio. What is the output of the MLSD and of the MAPSD?

Sol.: The likelihoods are as follows:

f(y|a0) = f(y0|a0 = −1)f(y1|a1 = 1)f(y2|a2 = 1) =
=

1

(2π · 0.1)3/2
exp

µ
−(1.3 + 1)

2 + (−0.6− 1)2 + (0.8− 1)2
2 · 0.1

¶
= 1.5 · 10−17

f(y|a00) =
1

(2π · 0.1)3/2
exp

µ
−(1.3− 1)

2 + (−0.6 + 1)2 + (0.8− 1)2
2 · 0.1

¶
= 0.47

and the log-likelihood ratio is:

log
f(y|a0)
f(y|a00) = log

1.5 · 10−17
0.47

= −38.
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Figure 1:

A posteriori probabilities:

p(a0|y) =
p(a0) · f(y|a0)

f(y)
∝ p(a0) · f(y|a0) = 0.8 · 1.5 · 10−17 = 1.2 · 10−17

p(a00|y) =
p(a00) · f(y|a00)

f(y)
∝ p(a00) · f(y|a00) = 0.2 · 0.47 = 0.094,

with log-likelihood ratio:

log
p(a0|y)
p(a00|y) = log

1.2 · 10−17
0.094

= −36.6.

Both detectors select a00.

Q.4. (1 point) Consider a spread spectrum (SS) system with BPSK modulation (recall that
a SS signal is given by

P
n ang(t− nT ) with waveform g(t) having bandwidth-time product

WT = N > 1). Find the spectral efficiency (bit/ 2-dim) and the SNR gap to capacity
(SNRnorm) as a function of the spreading factor N and the SNR E/No.What happens when
the spreading factor N →∞? Explain the result.
Sol.: Spectral efficiency

ρ =
1

N
[bit/ 2-dim],

SNR gap to capacity:

SNRnorm =
E/No

2ρ − 1 =
E/No

2
1
N − 1 →N→∞∞.

This result shows that SS becomes increasingly inefficient in the use of the bandwidth as the
spreading factor N increases.

PART II: Problems -
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P.1. (2 points) Consider codes defined on the 3-dimensional hyper-cube of fig. 1 (the origin
of the axes is at the center of the cube and we denote the length of each side as 2c). Assume
that the signal is received on a AWGN channel with power per dimension σ2 = No/2.
(a) Study at first the code consisting of all the vertices (black and white). What is the
spectral efficiency (number of bits per two dimensions)? Also, find the exact probability of
symbol error and the union bound approximation as a function of the SNR E/No (recall
that E is the energy per 2-dim).
(b) Now, consider the smaller code given by only white vertices. What is now the spectral
efficiency? Find the union bound approximation of the symbol error probability. Is the exact
probability of error easy to calculate in this case?
(c) Suppose that the SNR is E/No = 6dB and calculate the probability of error for the two
codes (you can use the union bound approximations). Repeat with Eb/No = 6dB and for
SNRnorm = 6dB. Draw some conclusions.

Sol.: (a) Spectral efficiency

ρ =
2 · log2 8

3
=
6

3
= 2.

Probability of symbol error:

Pr[symbol error] = 1−
µ
1−Q

µ
2c√
2No

¶¶3
=

= 1−
Ã
1−Q

Ãr
E

No

!!3
,

where we have used the fact that E = 2c2. The union bound approximation is

Pr[symbol error] ' 3Q
Ãr

E

No

!
.

(b) Spectral efficiency:

ρ =
2 · log2 4

3
=
4

3
.

Union bound approximation of the probability of symbol error:

Pr[symbol error] ' 3Q
Ã
2
√
2c√
2No

!
= 3Q

Ãr
2E

No

!
.

The exact probability of error is not easy to obtain given the shape of the decision regions.
(c) Fixing E/No = 6dB, we have

Pr[symbol error]full ' 3Q
³√
4
´
= 0.07

Pr[symbol error]small ' 3Q
³√
2 · 4

´
= 0.007

The small constellation as a coding gain of 3dB at the cost of sacrificing 2/3 of the spectral
efficiency of the full constellation.
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With Eb/No = 6dB

Pr[symbol error]full ' 3Q

Ãr
Ebρ

No

!
= 3Q

Ãr
2Eb

No

!
= 0.007

Pr[symbol error]small ' 3Q

Ãr
2Ebρ

No

!
= 3Q

Ãr
8Eb

3No

!
= 0.0016.

With SNRnorm = 6dB

Pr[symbol error]full ' 3Q
³p

SNRnorm · (2ρ − 1)
´
= 3Q

³p
3SNRnorm

´
= 8 · 10−4

Pr[symbol error]small ' 3Q
³p

2SNRnorm · (2ρ − 1)
´
= 3Q

µq
2SNRnorm · (24/3 − 1)

¶
=

= 7.5 · 10−4

From these last two results, we see that, when normalizing the required energy by the rate or
the minimum required energy (from Shannon’ capacity), the two constellations have similar
performance.

P.2. (2 points) A given ISI channel has folded spectrum Sh(e
j2πfT ) = 2 · (1− cz−1)(1− c∗z)

with |c| < 1. L = 3 symbols are transmitted from a binary constellation A = {0, 1}.
(a) Draw the Whitened Matched filter front-end. Is the whitening filter realizable?
(b) Assume that c = 0 and that the received signal is y = [0.4 0.8 0.9]. Derive the optimal
MLSD detector and find its output corresponding to input y.
(c) Assume now c = 0.3 and the received signal y = [0.4 0.8 0.9 1.3]. Solve the problem at
the previous point by using the Viterbi algorithm. Sketch carefully metrics and survivors at
the different steps.
(d) Suppose that the all-zero sequence is transmitted and write the approximate probability
of sequence error as a function of the noise power per dimension σ2.

Sol.: (a) See textbook or notes for the block diagram. The whitening filter is

1

γ2M∗(1/z∗)
=

1

2(1− c∗z)
.

which is IIR anti-causal (and stable). It is thus not realizable (unless c = 0).
(b) If c = 0, no ISI is present, and MLSD can be performed symbol by symbol, so that
the optimal detector is a simple slicer with threshold 0.5. This leads to the MLSD estimate
â =[0 1 1].
(c) The equivalent channel after the whitener isM(z) = 1−0.3z−1, which leads to the trellis
in fig. 2, where the branch metrics are also shown. The algorithm then proceeds as usual
(see textbook or notes). The output is â =[0 1 1].
(d) From the union bound approximation

Pr[sequence error] ' 3Q
µ
dmin
2σ

¶
= 3Q

Ã√
12 + 0.32

2σ

!
= 3Q

µ
1.04

2σ

¶
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Figure 2:

P.3. (2 points) The a priori probabilities of two symbols a0, a1 ∈ A = {0, 1} satisfy
pA0(0) = 3/4 and pA1(0) = 1/2. The symbols are transmitted over an ISI channel that
is described by the transfer function M(z) = 1 − 0.5z−1. We would like to obtain soft-
information about the transmitted symbols given that the received signal is z =[1.1 0.6
−0.3] and knowing that the noise power is σ2 = No/2 = 0.5 (we also have ak = 0 for k < 0
and k > 2).
(a) Draw the trellis with appropriate branch metrics γk(p, q) for the BCJR algorithm.
(b) Perform the BCJR algorithm and find the a posteriori probabilities of the transmitted
symbols (pAk

(a|z)).
(c) What are the log-likelihood ratios for the three symbols? Which symbol can be decided
on with the highest confidence?

Sol.: (a) The branch metrics γk(p, q) can be written as γk(p, q) = pAk(a)f(zk|Ψk = p,Ψk+1 =

p) = pAk
(a) exp(−(zk−s(p,q)k )/(2σ2)) where we have used standard notation and have dropped

the constant 1/
√
2πσ2 since it is immaterial for the algorithm. The received signals s(p,q)k

corresponding to state transition (p, q) can be easily found, and so can the branch metrics
γk(p, q), as in Fig. 3.
(b) Forward and backward recursions are shown in the Fig. 4, along with the unnormalized
and normalized values of σk(p, q). The corresponding values of the a posteriori probabilities
of the transmitted symbols are:

pAo(0|z) = 0.52, pAo(1|z) =0.48
pA1(0|z) = 0.33, pA1(1|z) =0.67

so that the log-likelihoods are:

λ0 = log
pAo(1|z)
pAo(0|z)

= −0.08
λ1 = 0.7
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Figure 3:
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Figure 4:
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