
ECE 776 - Information theory
Midterm

Q1 (1 point). Given the channel p(y|x)

p(y|x) =

⎡⎣ 1/3 2/3 0
0 1/3 2/3
2/3 0 1/3

⎤⎦ ,
calculate the capacity.

Sol.: The channel is symmetric since each row is a permutation of the other rows and the
sums on each column are the same. Therefore, we have

C = log |Y|−H(1/3, 2/3, 0) =

= log 3−H(1/3) = 0.67 bits.

Q2 (1 point). Given two random variables X and Y, assume that X is uniformly distributed
in the set X = {1, ...,M}. Prove the following inequality that relates the mutual information
I(X;Y ) to the probability P [X = Y ]

I(X;Y ) ≥ P [X = Y ] logM −H(P [X = Y ]).

(Hint : use the Fano inequality)

Sol.: The Fano inequality reads

P [X 6= Y ] logM +H(P [X 6= Y ]) = (1− P [X = Y ]) logM +H(P [X = Y ])

≥ H(X|Y ) = H(X)− I(X;Y )

Thus

I(X;Y ) ≥ H(X)− (1− P [X = Y ]) logM −H(P [X = Y ]) =

= H(X)− logM + P [X = Y ] logM −H(P [X = Y ])

≥ P [X = Y ] logM −H(P [X = Y ]),

where the last inequality follows from the fact that H(X)− logM ≥ 0.

Q3 (1 point). You are given a random vector X = (X1, ..., Xn) of binary random variables
Xi ∈ {0, 1}. From this vector, we construct a new vector Y which measures the run lengths
of the symbols Xi as they occur. As an example, if X reads X =(0, 0, 0, 1, 1, 0, 0, 1, 0, 0),
we have Y = (3, 2, 2, 1, 2), which provides the number of consecutive instances of the same
symbol (0 or 1) in X. What is the relationship between H(X) and H(Y)? And between
H(X) and H(Y,X1)?

Sol.: Since Y is a function of X, we have

H(X) ≥ H(Y).
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Moreover, the mapping betweenX and (Y,X1) is one-to-one, in fact knowing the run-lengths
and the initial symbol fully specifies X. It follows that

H(X) = H(Y,X1).

Q4 (1 point). Given an iid sequence Xi, i = 1, 2, ..., it is known that a rate of H(X) bits per
symbol is enough to describe the source. Say now that a second iid source Yi, ”correlated”
with Xi, is available at the decoder. It can be proved that in this case only H(X|Y ) bits per
symbol are necessary. Assuming that Xi and Yi are Ber(0.5) and that P [Xi 6= Yi] = p, find
H(X) and H(X|Y ). What happens if p = 0? If p = 1? If p = 0.5? Interpret the results.

Sol.: The entropy is easily calculated as H(X) = 1. The conditional entropy reads

H(X|Y ) = pY (0)H(X|Y = 0) + pY (1)H(X|Y = 1) =
= 0.5 ·H(p) + 0.5 ·H(p) = H(p).

If p = 0 or p = 1, based on the knowledge of Yi, the decoder can immediately reconstruct Xi

without any further information, thus we have H(X|Y ) = 0. On the other hand, if p = 0.5,
the information about Yi is useless in reconstructing Xi and H(X|Y ) = H(X) = 1.

P1 (2 points). A small radar transmits an electromagnetic pulse and listens for a possible
echo returned by a target object. The small radar simply sets a threshold on the power of
the received signal: if the received power is above the threshold, then an echo is detected and
the radar outputs 1 (that is, target detected); otherwise it outputs 0 (target not present).
Because of noise, the radar can make erroneous decisions. In order to obtain a more accurate
detection, a series of n pulses is transmitted.
Mathematically, let us assume that the target is present or not with probability 50%. If
the target is present, the n outputs of the radar are given by the iid random process
X11,X12, ...,X1n with X1i ∼ Ber(0.8). This means that with probability 0.8 the detector
is able to correctly detect the target for each transmitted pulse. Conversely, if the target is
not present, the n outputs of the radar are given by the iid random process X21,X22, ..., X2n

with X1i ∼ Ber(0.2), meaning that the probability of false alarm is 0.2.
We want to study the random process given by the radar outputs, say Yi.
(a) Is Yi stationary? Is it iid?

Sol.: Yes, the statistics of the process do not change with time (see also class notes).

(b) Evaluate the entropy rate H(Y) of Yi.

Sol.:

H(Y) = lim
n→∞

H(Y n)

n
=
1

2
H(0.8) +

1

2
H(0.2),

see class notes for details.

(c) Can we apply the AEP to Yi (that is, is it true that − 1
n
log p(Y n)→ H(Y))? Explain.
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Sol.: No, we cannot apply the AEP because the sequence is not ergodic. To see this, let us
calculate

−1
n
log p(Y n)→

½
H(0.8) w.p. 0.5
H(0.2) w.p. 0.5

.

(d) Assume that we need to send sequence Yi to a controller. Is there a code that achieves
an average description length Ln such that

Ln
n
→ H(Y)? If yes, find such code.

Sol.: Let us use Huffman or Shannon-Fano coding on sequence Y n. We obtain an average
code length Ln that satisfies

H(Y n)

n
≤ Ln

n
<

H(Y n) + 1

n
,

so that for n→∞ Ln
n
→ H(Y).

P2 (2 points). A source X is characterized by the pmf

p(x) =

⎧⎨⎩ 0.7 x = 1
0.2 x = 2
0.1 x = 3

.

(a) Find the codeword lenghts for the binary Huffman code and for the Shannon-Fano code.

Sol.: It is easy to see that for Huffman, we have lengths (c1, c2, c3) = (1, 2, 2) while for
Shannon-Fano (c1, c2, c3) = (d− log 0.7e , d− log 0.2e , d− log 0.1e) = (1, 3, 4).

(b) Calculate the entropy of the source and compare it with the average lengths of the two
codes at the previous point.

Sol.: The entropy reads

H(X) = −0.7 log 0.7− 0.2 log 0.2− 0.1 log 0.1 = 1.157 bits,

while the average codeword lengths are

L(CHuffman) = 0.7 · 1 + 0.2 · 2 + 0.1 · 2 = 1.3 bits
L(CShannon) = 0.7 · 1 + 0.2 · 3 + 0.1 · 4 = 1.7 bits.

(c) Can the average length of any code be smaller than 1.15 bits per symbol? Can the
average length of a symbol-by-symbol code be smaller than 1.3 bits per symbol?

Sol.: Since H(X) = 1.157 bits, it is not possible for any code to achieve L(C) = 1.15
bits/symbol. Moreover, among symbol-by-symbol codes, we know that Huffman codes min-
imize the average length, therefore it is not possible to achieve L(C) < L(CHuffman) = 1.3
bits.
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(b) Considering alphabets other than binary, say D−ary alphabets, what is the smallest
integer D such that the average length for the Shannon-Fano code equals the average length
for the Huffman code?

Sol.: With D > 2, L(CHuffman) = 1. However, this is not true for Shannon-Fano codes.
Imposing that the longest codeword for Shannon codes is 1, we obtain the desired condition:
d−logD0.1e = 1. Therefore, we get that the smallest integer D such that the average length
for the Shannon-Fano code equals the average length for the Huffman code is D = 10.

P3 (2 points). Consider a memoryless channel that takes pairs of bits as input and produces
two bits as output as follows: 00→ 01, 01→ 10, 10→ 11, 11→ 00 (to read: input→output).
Let X1X2 denote the two input bits and Y1Y2 the two output bits.
(a) Calculate the mutual information I(X1X2;Y1Y2) for a given joint pmf of the four pairs of
input bits (define: p1 = P [X1 = 0,X2 = 0], p2 = P [X1 = 0, X2 = 1], p3 = P [X1 = 1,X2 = 0]
and p4 = P [X1 = 1, X2 = 1]).

Sol.: With the definitions, we have

I(X1X2;Y1Y2) = H(X1X2) = H(p1, p2, p3, p4).

(b) Show that the capacity is 2 bits.

Sol.: The capacity is (define p = (p1, p2, p3, p4))

C = max
p

I(X1X2;Y1Y2) = 2,

with optimal pmf p = u =(1/4, 1/4, 1/4, 1/4).

(c) Show that, surprisingly, I(X1, Y1) = 0 for the capacity-maximizing distribution of the
input (that is, information is transferred by considering both bits). (Hint : Find the joint
PMF of X1 and Y1)

Sol.: We need to obtain the joint pmf ofX1 and Y1 under the assumption that p = u =(1/4, 1/4, 1/4, 1/4).
We start from the joint pmf of pairs of bits:

X1X2\Y1Y2 00 01 10 11
00 0 1/4 0 0
01 0 0 1/4 0
10 0 0 0 1/4
11 1/4 0 0 0

.

From this we easily obtain:
X1\Y1 0 1
0 1/4 1/4
1 1/4 1/4

,

so that X1 and Y1 are independent and I(X1, Y1) = 0.
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