
ECE 776 - Information theory (Fall 2008)
Midterm

Please give well-motivated answers.

Q1 (1 point). Find whether H(X|Z) S H(X|Y ) for X,Y,Z real variables and: (a) Z = |Y |;
(b) Z = Y 3.

Sol.: For both cases (a) and (b), we have the Markov chain X − Y − Z, so that in general
from the data processing inequality

I(X;Z) ≤ I(X;Y )

and thus (by using I(X;Z) = H(X)−H(X|Z) and I(X;Y ) = H(X)−H(X|Y ))

H(X|Z) ≥ H(X|Y ).

However, for the case (b), the function between Y and Z is one-to-one, so that the above
inequalities hold with equality (in fact, we also have X − Z − Y ).

Q2 (1 point) Given the joint pmf p(x, y) defined as below

x\y 0 1
0 0.1 0.6
1 0.2 0.1

are the sequences x5 = 00010 and y5 = 01111 jointly typical (i.e., belonging to set A(5)� )
given � = 0.15? Are they individually typical with respect to the marginal distributions p(x)
and p(y)?

Sol : We have the marginals p(x) = (0.7, 0.3) and p(y) = (0.3, 0.7) so that H(X) =
H(Y ) = −0.3 log2 0.3− 0.7 log2 0.7 = 0.8813 bits. Moreover, the joint entropy is H(X,Y ) =
−0.2 log2 0.1 − 0.2 log2 0.2 − 0.6 log2 0.6 = 1.571. Now, evaluating the individual empirical
entropy −1/5 log2 p(x5) (and similarly for x5), we get

−1
5
log2(0.7

4 · 0.3) = 0.7591 = 0.8813± 0.15,

so that both sequences are individually typical. To check whether they are jointly typical,
we must calculate

−1
5
log2(0.1 · 0.63 · 0.1) = 1.771 6= 1.571± 0.15.

Therefore, the sequences are not jointly typical with respect to the given joint distribution.

Q3 (1 point) Given the discrete memoryless channel defined by

p(y|x) =
⎡⎣ 1/4 3/4 0
3/4 0 1/4
0 1/4 3/4

⎤⎦ ,
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calculate the capacity.

Sol.: The channel is symmetric, and therefore we have

C = log2 3−H(1/4) = 0.774 bits/ channel use.

Q4 (1 point) A radio signal X is received via two antennas, whose corresponding received
signals are Y1 and Y2. The noises at the two antennas are independent and have the same
statistics, so that p(y1, y2|x) = p(y1|x)p(y2|x), with p(y1|x) = p(y2|x) if y1 = y2 (i.e., Y1 and
Y2 are conditionally independent and identically distributed given X). Prove that

I(X;Y1, Y2) = 2I(X;Y1)− I(Y1;Y2).

Based on this result, argue that the capacity of the two-antenna channel is less than twice
the capacity of the single-antenna channel that only measures Y1 (or Y2).

Sol.: We can write

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)
= H(Y1, Y2)−H(Y1|X)−H(Y2|X) =
= H(Y2) +H(Y1)− I(Y1;Y2)−H(Y1|X)−H(Y2|X) =
= −I(Y1;Y2) + 2I(X;Y1)

where in the second line we have used the fact that Y1 −X − Y2 (i.e., Y1 and Y2 are condi-
tionally independent given X) and in the fourth, we have used the fact that Y1 and Y2 are
conditionally and unconditionally identically distributed.
The capacity C2 of the two-antenna system is then obtained as

C2 = max
p(x)

I(X;Y1, Y2) = max
p(x)

2I(X;Y1)− I(Y1;Y2) ≤ 2max
p(x)

I(X;Y1) = 2C1,

where C1 is the capacity of the one-antenna system.

P1 (2 point) - Generalizing the Fano inequality
We want to estimate a quantityX (taking values in a set X ) via the observation Y. Instead of
producing a standard estimator X̂(Y ) (i.e., X̂ function of Y ) and requiring that X̂(Y ) = X
(no error) with large probability, we require less from the estimate. The estimator in fact
is not a single value X̂(Y ) but rather a list of values in X , say L(Y ), which depends on
the observation Y. The number of elements in the list is |L| (same for all Y ). We define
the probability of error as the probability that the real quantity X is not in the list L(Y ):
Pe = Pr[X /∈ L(Y )]. Following the steps of the proof of the Fano inequality, show that

H(X|Y ) ≤ Pe log |X |+ (1− Pe) log |L|+H(Pe).

Interpret this result and compare it with the standard Fano inequality (how do we get the
standard Fano inequality from the relationship above?).
(Hint: As in the proof of the Fano inequality start by defining a variable E that identifies
the error event).

2



Sol : Define the error event E

E =

½
1 if X /∈ L(Y )
0 if X ∈ L(Y )

and notice that
H(X|Y ) = H(X,E|Y )

since H(X,E|Y ) = H(X|Y ) +H(E|X,Y ) and H(E|X,Y ) = 0. Now, we can write

H(X,E|Y ) = H(E|Y ) +H(X|E, Y )
≤ H(E) + (1− Pe)H(X|E = 0, Y ) + PeH(X|E = 1, Y )
≤ H(Pe) + (1− Pe) log |L|+ Pe log |X |,

since H(X|E = 0, Y ) ≤ H(X|E = 0) ≤ log |L|.
The standard Fano inequality is recovered for |L| = 1.
P2 (2 point)
(a) Assume that sequences xn and yn, taking values in sets X and Y respectively, satisfy
(xn, yn) ∈ A

(n)
� with respect to a joint distribution p(x, y) (i.e., the sequences xn and yn are

jointly typical). Show that the following is true of the conditional probability p(yn|xn)
2−n(H(Y |X)+2�) ≤ p(yn|xn) ≤ 2−n(H(Y |X)−2�)

(Hint: Use the definitions of typicality, joint typicality and of conditional distribution)
(b) Define A(n)� (xn) as the set of all sequences yn ∈ Yn that are jointly typical with a given
xn ∈ A

(n)
� (X) (xn is individually typical), that is,

A(n)� (x
n) = {yn: (xn, yn) ∈ A(n)� }.

Show that |A(n)� (xn)| ≤ 2n(H(Y |X)+2�).
(Hint: Follow the proof of the AEP and use the result at the previous point)
(c) Fixing a given sequence xn ∈ A

(n)
� (X) (xn is individually typical), prove the following

regarding the probability that a randomly and independently generated sequence Y n is jointly
typical with xn

Pr[(Y n, xn) ∈ A(n)� ] ≤ 2−n(I(X;Y )−3�).
(Hint: Start by writing Pr[(Y n, xn) ∈ A

(n)
� ] =

P
yn∈A(n)� (xn)

p(yn), then use the definition of
typicality and the result and the previous point)

Sol.: (a) We have p(yn|xn) = p(xn, yn)/p(xn) and

2−n(H(X)+�) ≤ p(xn) ≤ 2−n(H(X)−�)

2−n(H(X,Y )+�) ≤ p(xn, yn) ≤ 2−n(H(X,Y )−�)

by definition. It follows that

p(yn|xn) ≤ 2
−n(H(X,Y )−�)

2−n(H(X)+�)
= 2−n(H(X,Y )−H(X)−2�) = 2−n(H(Y |X)−2�)
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and

p(yn|xn) ≥ 2
−n(H(X,Y )+�)

2−n(H(X)−�)
= 2−n(H(X,Y )−H(X)+2�) = 2−n(H(Y |X)+2�).

(b) We have
1 ≥

X
yn∈A(n)� (xn)

p(yn|xn) ≥ |A(n)� (x
n)|2−n(H(Y |X)+2�)

so that
|A(n)� (x

n)| ≤ 2n(H(Y |X)+2�)
(c) We have

Pr[(Y n, xn) ∈ A(n)� ] =
X

yn∈A(n)� (xn)

p(yn) ≤ |A(n)� (x
n)|2−n(H(Y )−�)

≤ 2n(H(Y |X)+2�)2−n(H(Y )−�) = 2n(H(Y |X)−H(Y )+3�) =

= 2−n(I(X;Y )−3�).

P3 (2 point) A random process Yi (i = 1, 2, ...) is generated as shown in the figure below.
Specifically, if random variable Z = 0, then Yi = X0i for i = 1, 2, ..., and X0i is a Markov

chain with transition probabilities given by
∙
0.9 0.1
0.1 0.9

¸
(see figure); instead if Z = 1, we

have that Yi = X1i for i = 1, 2, ..., and X1i is a Markov chain with transition probabilities

given by
∙
0.2 0.8
0.6 0.4

¸
(see figure). Assuming that variable Z is independent of all other

variables and such that Pr(Z = 0) = 0.3, and assuming that the two Markov chains are
stationary (i.e., the stationary initial distribution is assumed), answer the following:
(a) Is the process Yi stationary?
(b) Is the process Yi a Markov chain?
(c) Are we guaranteed that the entropy rate H(Y) exists? If so, calculate H(Y).
(d) Is the process ergodic? Are H(Y) bits/ symbol enough to have a lossless compression of
the source?

Sol.: (a) Yes. In fact, the distribution pY (yk1, yk2 , ..., ykm) for any given set of time instants
k1, k2, ..., km reads

pY (yk1 , yk2, ..., ykm) = 0.3p0(yk1, yk2 , ..., ykm) + 0.7p1(yk1, yk2, ..., ykm),

and p0(yk1 , yk2, ..., ykm) and p1(yk1 , yk2, ..., ykm) are the joint distributions for the two station-
ary Markov chains X0i and X1i.
(b) From the reasoning above, we can write:

pY (y1, y2, ..., yn) = 0.3p0(y1, y2, ..., yn) + 0.7p0(y1, y2, ..., yn) =

= 0.3p0(y1)p0(y2|y1)p0(y3|y2) · · · p0(yn|yn−1)
+0.7p1(y1)p1(y2|y1)p1(y3|y2) · · · p1(yn|yn−1)

with p0(yn|yn−1) and p1(yn|yn−1) denoting the transition probabilities for the two Markov
chains. As such, we have that Yi is not a Markov chain.
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(c) Yes, since the process is stationary.

H(Y) = lim
n→∞

H(Y n)

n

and H(Y n) = H(Y n|Z) + I(Y n;Z) so that

H(Y) = lim
n→∞

H(Y n|Z)
n

where we have used the fact that I(Y n;Z)/n ≤ H(Z)/n→ 0. Now,

H(Y n|Z) = 0.3H(Xn
0 ) + 0.7H(X

n
1 )

so that
H(Y) = 0.3H(X0) + 0.7H(X1).

The entropy rates of the two Markov chains are easily calculated

H(X0) = H(X02|X01) = 2
0.1

0.2
H(0.1) = H(0.1) = 0.469

H(X1) = H(X12|X11) =
0.8

1.4
H(0.2) +

0.6

1.4
H(0.4) = 0.829

and finally,
H(Y) = 0.3 · 0.469 + 0.7 · 0.829 = 0.721

(d) The process is not ergodic. This can be seen by, e.g., calculating the temporal average

1

n

nX
i=1

Yi →
½

E[X0i] = 0.5 with prob. 0.3
E[X1i] = 0.8/1.4 with prob. 0.7

,

while the ensemble average is E[Xi] = 0.3 · E[X0i] + 0.7· E[X1i]. Thefore, the AEP does
not apply and we cannot conclude that H(Y) bits/ symbol are enough to have a lossless
compression of the source.
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