ECE 744

Midterm, Fall 2014

Please provide clear and complete answers by detailing your derivations.

1. (2 points) Consider the cone $K = \{x \in \mathbb{R}^n | x = Ay \text{ with } y \succeq 0\}$, with $A \in \mathbb{R}^{n \times k}$ and $y \in \mathbb{R}^k$.

a. Calculate the dual cone (Hint: use the definition).

b. Consider the case n = 2 and k = 2. Give conditions on A so that the cone K is proper.

2. (1 point) Consider a convex function $f : \mathbb{R} \to \mathbb{R}$ with domain dom $f = \{x | a \leq x \leq b\}$ that is monotonically increasing. Is the inverse function $f^{-1}(x)$ convex/concave? Is it quasi-convex and/or quasi-concave? (Hint: Recall that $f^{-1}(f(x)) = x$).

3. (1 point) Provide a simple proof (different from the one seen in class) that a function $f : \mathbb{R}^n \to \mathbb{R}$ that is convex in \mathbb{R}^n and bounded is constant.

4. (1 point) Evaluate the support function $S_C(x)$ for the sets $C = \{x \in \mathbb{R} | 0 \le x \le 1\}$ and $C = \mathcal{B}_2(0, 1)$ (ℓ_2 -norm ball).

5. (1 point) Show that $f(x, y) = -\log(x^2 - ||y||_2^2)$ is convex in dom $f = \{(x, y) \in \mathbb{R} \times \mathbb{R}^n | x > ||y||_2\}$.

6. (1 point) Consider a quasi-linear function $f : \mathbb{R}^n \to \mathbb{R}$. What kind of convex sets are the superlevel and sublevel sets? (Hint: Use geometric intuition.)

7. (1 point) Calculate the dual function of $f(x) = x^p$ with p > 1 and dom $f_0 = \mathbb{R}_+$ (Hint: Use the first-order condition $df_0(x)/dx = 0$ for optimization).

8. (2 points) Consider a convex set C and a real number $a \ge 0$.

a. Show that the set $S = \{x | dist(x, C) \le a\}$ is convex, where $dist(x, C) = inf_{y \in C} ||x - y||$.

b. Show that the set $T = \{x | B(x, a) \subseteq C\}$ is convex, where B(x, a) represents a norm ball.