
ECE 755 - Digital communications
Midterm

Please provide clear and complete answers (and write legibly!)

PART I: Questions -

Q1. (1 point) Consider a modulator that takes as input b bits every τ seconds and pro-
duces as output three real symbols a1, a2, a3. Symbols a1, a2, a3 are then transmitted via an
orthonormal basis of functions φi(t) over a bandwidth B and time τ . What is the minimum
bandwidth B needed for this system (assuming τ sufficiently large)? What is the maximum
spectral efficiency of this system? What is the number of bits/ 2-dim?

Sol.: From the Laudau-Pollack theorem, we have

B ≥ 3

2τ
.

The spectral efficiency (bits/ sec/ Hz) is

ν =
b

τ
· 1
B
≤ 2
3
b,

while the number of bits/ 2-dim is 2b/3.

Q2. (1 point) Given two possible sequences a0 = [1 1 1] and a00 = [1 −1 −1] observed over an
AWGN channel with noise power per dimension σ2 = No/2 = 0.3, evaluate the likelihoods
for a0 and a00 given the received signal samples y = [1.3 −0.6 0.8] (i.e., f(y|a)). Then, assume
that the a priori probabilities for the sequences are p(a0) = 0.2 and p(a00) = 0.8, and find
the a posteriori probabilities of a0 and a00 given the same y (you can neglect inessential
multiplicative constants), and the their ratio. What is the output of the MLSD and of the
MAPSD?

Sol.: The likelihoods are as follows:

f(y|a0) = f(y0|a0 = 1)f(y1|a1 = 1)f(y2|a2 = 1) =
=

1

(2π · 0.3)3/2 exp
µ
−(1.3− 1)

2 + (−0.6− 1)2 + (0.8− 1)2
2 · 0.3

¶
= 0.0044

f(y|a00) =
1

(2π · 0.3)3/2
exp

µ
−(1.3− 1)

2 + (−0.6 + 1)2 + (0.8 + 1)2
2 · 0.3

¶
= 0.0012

and the log-likelihood ratio is:

log
f(y|a0)
f(y|a00) = log

0.0044

0.0012
= 1.3.

A posteriori probabilities:

p(a0|y) =
p(a0) · f(y|a0)

f(y)
∝ p(a0) · f(y|a0) = 0.2 · 0.0044 = 8.8 · 10−4

p(a00|y) =
p(a00) · f(y|a00)

f(y)
∝ p(a00) · f(y|a00) = 0.8 · 0.0012 = 9.6 · 10−4
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Figure 1:

with log-likelihood ratio:

log
p(a0|y)
p(a00|y) = log

8.8

9.6
= −8.7× 10−2.

Both decision are quite unreliable, but the MLSD decides for a0 while the MAPSD for a00.

Q3. (1 point) Consider the constellation of points a ∈ A in Fig. 1 used for transmission
over a standard AWGN channel with power spectral density N0/2.
a. Write a general formula for the probability of symbol error for the constellation at hand
and equally likely transmitted symbols in terms of f(y|a), where y is the two-dimensional
received vector. Explain why (and if) this calculation is complicated (what step would you
not be able to carry out?).
b. From the general formula, write the steps that lead to the union bound approximation,
and evaluate such an approximation.
c. For what values of N0 you expect the approximation to be accurate? Why?

Sol.: a.

Pe =
1

16

16X
k=1

Pr[error|A = ak],

with
Pr[error|A = ak] = 1−

Z
decision region for ak

f(y|A = ak)dy,

with f(y|A = ak) being the likelihood of the received signal, which is a two-dimensional
multivariate Gaussian distribution. Since the decision regions here have complicated (i.e.,
non-separable or in other words non rectangular) shapes, such integration is not easy.
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b.

Pe =
1

16

16X
k=1

Pr[error|A = ak]

=
1

16

16X
k=1

X
i6=k
Pr[Â = ai|A = ak]

≤ 1

16

16X
k=1

X
i6=k

Q

µ
dik√
2N0

¶
' Kmin,ave Q

µ
dmin√
2N0

¶
,

where dmin is the minimum distance and Kmin,ave the average number of neighbors at the
minimum distance. Here we have dmin = 2 and by a direct calculation

Kmin,ave =
1

4
2 +

1

4
0 +

1

4
1 +

1

4
1 = 1.

c. For small N0, since we are neglecting terms that are small at high SNR.

Q4. (1 point) You are given a radio receiver withM antennas that is connected to a PC for
digital processing (i.e., this is a software-defined radio). You can design the radio frequency
(analog) part of the receiver by using local oscillators at frequency fLO, linear filters and
two analog-to-digital converters (ADC) working each at 64Msamples/s (real samples). The
ADCs connect the analog world to the PC. Assume that the signal of interest has a bandwidth
W centered around frequency fc = 1GHz and that there are no synchronization issues.
a. Suppose that the available local oscillators have fLO = 984MHz. Propose a RF receiver
(with the blocks described above) that enables alias-free ADC conversion. How large can W
be? How many antennas (i.e., received signals) can this receiver handle (given the available
ADC converters)?
b. Assume now that fLO = 1GHz and respond to the same questions at the previous point.

Sol.: a. A reasonable structure is the following (heterodyne) receiver. The received signal
is filtered to remove image frequencies and then multiplied by cos(2πfLO) and filtered again
to remove high-frequency components. As a result, the central frequency is then shifted to
fc − fLO = 16MHz. In order to avoid alias when sampling, the bandwidth W has to satisfy
W ≤ 32MHz. Since this requires only one ADC, we can accommodate M = 2 antennas
with this design.
b. In this case, the receiver may shift the central frequency to DC. The receiver is then
the standard (homodyne) structure with two branches where the signal is multiplied in the
first by

√
2 cos(2πfLO) and in the second by −

√
2 sin(2πfLO). Each branch, after low-pass

filtering, is then fed to an ADC. The maximum bandwidth that can be tolerated without
alias is now W ≤ 64MHz. However, since we need two ADC, we can only accommodate
M = 1 antenna with the available hardware.

PART II: Problems -
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P1. Consider a wireless sensor powered by a battery with a residual energy Ebattery = 10J.
Assume that the sensor can transmit with powers P1 = −6dBm, P2 = −3dBm or P3 =
0dBm and that the attenuation between transmitter and receiver is η = 50dB (so that the
received power is Pi/η). We neglect any other form of energy consumption at the sensor.
The bandwidth used for transmission is W = 1kHz around carrier frequency fc = 2.4GHz
and the power spectral density of the additive white Gaussian noise is N0 = 10

−11W/Hz.
a. Consider at first ideal coding (i.e., no constraints on complexity and delay). a.1) Calculate
maximal achievable rates in bits/ sec for the three different powers. a.2) Then, calculate
the sensor life-time in hours (i.e., how long will the sensor last if it transmits continuously?)
and the maximum number of bits that the sensor can transmit in its life-time for the three
powers. Is it better to transmit with a smaller or larger power if one wants to maximize the
number of transmitted bits?
b. Following the point above, if you were free to choose whatever power and spectral
efficiency you wish for the sensor, what would you choose to maximize the number of bits
sent reliably during the life-time of the sensor? Calculate such maximum number of bits.
(Hint : The minimum energy per bit required for reliable communications is...)
c. Assume now that transmission takes place via BPSK modulation with roll-off factor
α = 0.2, and that we are interested in obtaining a probability of bit error less than 0.3.
Find the power among P1, P2 and P3 that maximizes the number of bits sent in the sensor’s
life-time under the constraint above. What is such maximum number of bits?

Sol.: a. a.1)

R1 = W log2

µ
1 +

P1/η

WN0

¶
=W log2

µ
1 +

10−5 · 1/4 · 10−3
10310−11

¶
= 0.322 kbits/s

R2 = W log2 (1 + 1/2) = 0.585 kbits/s

R3 = W log2 (1 + 1) = 1 kbits/s

a.2) Life-times

L1 =
Ebattery

P1
= 40000 sec ' 11.1 hours

L2 ' 5.6 hours

L3 ' 2.8 hours

and overall number of bits

Nb1 = L1R1 ' 13 Mbits

Nb2 ' 11.7 Mbits

Nb3 = 10 Mbits

b. We know that the minimum received energy ber bit received satisfies Ebmin,rx/N0 =
−1.6dB = log 2, so that

Ebmin,rx = N0 · log 2 ' 0.7 · 10−11J
and the corresponding transmitted energy per bit is

Ebmin,tx = ηEbmin,rx = 0.7 · 10−6J.

4



The maximum number of bits is thus

Nbmax = Ebattery/Ebmin,tx ' 1.43 · 103 Gbits.

c. Since we are using BPSK, the number of bits sent every second equals

W

(1 + α)
· ρ = W

(1 + α)
= 83.3 bits/sec,

so that the total number of bits is
W

(1 + α)
· Li.

Clearly, choosing P1 maximizes the life-time and thus the total number of bits. We need to
check however that the probability of error constraint is satisfied

Q(

r
2E

N0
) = Q(

r
2P1
N0W

(1 + α))

= Q(

r
2 · 1.2 · 10−5
4 · 10−8103 ) = Q(

√
0.6) ' 0.22 < 0.3.

The number of bits is thus

W

(1 + α)
· L1 = 83.3 · 40000 = 333.2 kbits.

P2. Consider a PAM transmission with equivalent channel h(t) being a rectangle of duration
τ (i.e., from 0 to τ) with unit energy (h(t) = 1/

√
τ ·rect(t/τ), where rect(t) = 1 for 0 ≤ t ≤ 1

and zero otherwise). The received signal is Y (t) =
P

k akh(t−kT )+N(t) with 1/T = 1Mbaud
and the usual definitions. A BPSK constellation A = {±c} is used. Assume that L = 3
symbols are sent (a0, a1 and a2) and that before (k < 0) and after (k > 1) the data sequence,
symbols ak = −1 are sent.
a. Assuming τ = 1μs a.1) Sketch the matched filter (MF) followed by a T -spaced sampler,
and write the corresponding output signal Yk; a.2) Write down the MLSD rule and find the
detected symbols given the received samples [y0 y1 y1] = [0.1− 0.7 0.3].
b. Consider now the case where τ = 1.5μs. b.1) Write the expression of the received signal
Yk after matched filtering and T -spaced sampling; b.2) Find the Whitened Matched filter
(WMF) and the MLSD rule.
c. For the case at point b., assume that c = 1 and that the received signal after the WMF
is [z0 z1 z2 z3] = [−1.6 0.8 −0.9 −1.9]. Find the detected sequence according to the MLSD
using the Viterbi algorithm.

Sol.: a. a.1) For the block diagram, please see notes and textbook. At the output of the
MF we have channel correlation function

ρh(k) = h(t) ∗ h(−t)|t=kT
= δk,

5



since h(t) ∗ h(−t) is a triangle with base corresponding to the interval [−1μs, 1μs], while
T = 1μs. It follows that the signal at the output of the MF and sampler is

Yk = ak +N 0
k,

with white noise with power spectral density N0.
a.2) The MLSD rule is (L = 3 here)

min
a∈AL

− log f(y|a)

⇔ min
a∈AL

L−1X
k=0

(yk − ak)
2,

which can be solved symbol by symbol. For the given example, the detected symbols are c,
−c and c, respectively.
b. b.1) Here we have

ρh(k) = h(t) ∗ h(−t)|t=kT
= δk +

1

3
δk−1 +

1

3
δk+1

and the folded spectrum is

Sh(z) = 1 +
1

3
z−1 +

1

3
z

= γ2
¡
1 + dz−1

¢
(1 + dz) ,

where it can be checked that, in order to have |d| < 1 as desired, we need d = (3−√5)/2 '
0.38 and γ2 = 1/3d ' 0.87. The received signal after sampling is

Yk = ak +
1

3
ak−1 +

1

3
ak+1 +N

0
k,

where the power spectral density of the noise is SN 0(z) = N0Sh(z).
b.2) The whitening filter at the output of the sampler is

1

γ2M∗(1/z∗)
' 1

0.87 · (1 + 0.38z) .

The received signal at the output of the WMF is

Zk = ak + 0.38ak−1 +N 00
k ,

where the power spectral density of the noise is N0/γ
2. The MLSD rule is

min
a∈AL

L−1X
k=0

(zk − (ak + 0.38ak−1))2.

The trellis is shown in Fig. 2. The Viterbi algorithm leads to decode (-1,1,-1).
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Figure 2:

P.3. (2 points) In partial response systems, intersymbol interference is purposedly created
to improve the system performance. Consider a partial response system where OOK (on-
off keying) information symbols xk ∈ {0, 1}, selected independently for k = 0, 1, ..., L − 1,
are prefiltered by H(z) = 1 − cz−1 with c a given (real) constant, producing as output a
sequence ak, which is transmitted via passband PAM as s(t) =

PL−1
k=0 akg(t−kT ), where g(t)

is a standard squared root of Nyquist waveform with zero roll-off factor.
a. Find and sketch the power spectral density Ss(f) of the transmitted signal s(t).
b. The signal s(t) can be equivalently seen as a regular PAM transmission with OOK symbols
xk, i.e., s(t) =

PL−1
k=0 xkh(t − kT ) and equivalent waveform h(t). Find h(t). Calculate and

sketch the Fourier transform |H(f)|2.
c. Is h(t) a square root of Nyquist waveform? If not, for what values of c can you find a
filter f(t) such that f(t) ∗ h(t) satisfies this condition?
d. Consider L = 2 and draw in the (two-dimensional) signal space the four possible received
points (a0, a1) (we neglect a2) for the three cases c = 0, c = −1 and c = 1. Fixing the average
constellation energy, what constellation(s) has (have) the best performance?
Sol.:
a.

Ss(f) =
1

T
Sa(e

j2πfT )|G(f)|2

=

½
1
T
Sa(e

j2πfT ) 1
2T
− ≤ f ≤ 1

2T

0 elsewhere
,

with

Sa(e
j2πfT ) = Ex|1− ce−j2πfT |2

=
1

2

¡
1 + c2 − 2c cos(2πfT )¢
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b.

s(t) =
L−1X
k=0

akg(t− kT )

=
L−1X
k=0

(xk − cxk−1)g(t− kT )

=
L−1X
k=0

xk(g(t− kT )− cg(t− (k − 1)T )),

so that
h(t) = g(t)− cg(t− T ).

We have

|H(f)|2 = |G(f)|2|1− ce−j2πfT |2

=

½
1 + c2 − 2c cos(2πfT ) 1

2T
− ≤ f ≤ 1

2T

0 elsewhere

c. No, since
P

k |H(f − k/T )|2 is clearly not constant. Filter f(t) that satisfy the stated
conditions can found as F (f) = 1/H(f) in the band of interest 1

2T
− ≤ f ≤ 1

2T
, unless H(f)

has a zero in such bandwidth. This case happens only if c = ±1.
d. The two constellations for c = 0 is ((0, 0), (0, 1), (1, 0), (1, 1)), for c = −1 is ((0, 0), (0, 1), (1,−1), (1, 0))
and for c = 1 is ((0, 0), (0, 1), (1, 1), (1, 2)). It can be easily seen that with a constraint on
the average energy the last two constellations will have a smallest minimum distance than
the other two, so that c = 0 is to be preferred.
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