ECE 776 - Information theory (Spring 2012) Midterm

Please give well-motivated answers.

1 (2 points). Prove that for any source $X \sim p(x)$ with $x \in \mathcal{X}$ and any binary prefix-free code with lengths $l(x), x \in \mathcal{X}$, we have the relationship

$$E[l(X)] = H(X) + D(p(x)||r(x)) - \log c,$$

where $r(x) = 2^{-l(x)}/c$ and $c = \sum_{x \in \mathcal{X}} 2^{-l(x)}$. Conclude that, if the distribution is dyadic (i.e., if $p(x) = 2^{-k(x)}$ for integers k(x)), then we can find a prefix-free code with average length equal to H(X) (Hint: Write explicitly the right-hand side of the equality above).

Sol:

$$-\sum_{x \in \mathcal{X}} p(x) \log p(x) + \sum_{x \in \mathcal{X}} p(x) (\log (p(x)) - \log(r(x))) - \log c$$
$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x) + \sum_{x \in \mathcal{X}} p(x) (\log p(x)) + l(x))$$
$$= E[l(X)].$$

If the distribution is dyadic, then we can choose l(x) = k(x) (since this satisfies Kraft's inequality), and thus $r(x) = 2^{-k(x)} = p(x)$ since c = 1. It follows that D(p(x)||r(x)) = 0 and thus E[l(X)] = H(X).

2. (1 point) Give an example of a source for which the rate required by a Shannon code is close to H(X) + 1.

Sol.: Consider a source $X \sim Ber(\epsilon)$ for a very small $\epsilon > 0$. Then, we have $H(X) \simeq 0$, and R = 1 for a Shannon code.

3 (3 points). Consider a source $X^n \sim p(x^n)$ $(x^n \in \mathcal{X}^n)$, and any fixed-to-fixed source code with rate R (i.e., encoder $W(X^n)$ and decoder $\hat{X}^n(W)$ with W consisting of nR bits). The probability of error is $P_e = \Pr[\hat{X}^n \neq X^n]$. We want to prove the inequality

$$P_e \ge \Pr\left[-\frac{1}{n}\log p(X^n) \ge R + \gamma\right] - 2^{-n\gamma} \tag{1}$$

for any such code and any $\gamma > 0$. To this end, define *B* as the set of sequences x^n that the code reproduces correctly and *T* as the set $\{x^n : -\frac{1}{n}\log p(x^n) \ge R + \gamma\}$, and answer the following.

a. Show that $\Pr[T] \leq P_e + \Pr[T \cap B]$ (Hint: The events B and B^c form a partition of the probability space).

b. Prove the upper bound $\Pr[T \cap B] \leq 2^{-n\gamma}$ (Hint: Use the definition of T and the cardinality of B).

c. Point a. and b. prove (1). Now, use (1) to show that if R < H(X), then $P_e \to 1$ for $n \to \infty$.

Sol.: a. We have

$$Pr[T] = Pr[T \cap B^{c}] + Pr[T \cap B]$$

$$\leq Pr[B^{c}] + Pr[T \cap B]$$

$$= P_{e} + Pr[T \cap B],$$

where we have used the fact that $P_e = \Pr[B^c]$. b. We have

$$Pr[T \cap B] \leq |B|2^{-n(R+\gamma)}$$
$$\leq 2^{nR}2^{-n(R+\gamma)}$$
$$= 2^{-n\gamma},$$

where the first inequality follows by the definition of T (every sequence in T satisfies $p(x^n) \leq 2^{-n(R+\gamma)}$). The second inequality follows since $|B| \leq 2^{nR}$.

c. For sufficiently small γ , if R < H(X), by the law of large numbers, we have that $\Pr\left[-\frac{1}{n}\log p(X^n) \ge R + \gamma\right] \to 1.$

4. (2 points) a. Calculate the entropy rate of the process $X_k = X_{k-1} \oplus Z_k$ with $Z_k \sim Ber(p)$ and i.i.d. (X_k is assumed to be stationary). b. Repeat for $X_k = X_{k-1} \oplus X_{k-2} \oplus Z_k$.

Sol.: a. Since X_k is stationary, we can write

$$H(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_1, ..., X_{n-1})$$

= $H(X_n | X_{n-1})$
= $H(Z)$
= $H(p).$

b. Similarly, we have

$$H(\mathcal{X}) = \lim_{n \to \infty} H(X_n | X_1, ..., X_{n-1})$$

= $H(X_n | X_{n-1}, X_{n-2})$
= $H(Z)$
= $H(p),$

where the second equality follows since, given X_{n-1}, X_{n-2}, X_n does not depend on the samples X_{n-k} with k > 3.

5. (2 points) Find a Huffman code and a Shannon code for the source (1/3, 1/5, 1/5, 2/15, 2/15). Compare their average length.

6. (2 points) Consider random variable $X \sim Ber(0.5)$, and a random variable Y distributed as follows: if X = 0, Y equals 0 with probability 0.7 and 1 with probability 0.3; if X = 1, Y equals 1 with probability 0.7 and 0 with probability 0.3. a. Find the function $\hat{X} = f(Y) \in \{0, 1\}$ that minimizes $Pr[\hat{X} \neq X]$. b. For the given estimator $\hat{X} = f(Y)$, calculate $H(X|\hat{X})$ and P_e .

c. Compare the results at the previous point with Fano inequality.

Sol.: a. By inspection of the joint distribution, we have

$$f(0) = 0$$

 $f(1) = 1.$

b. We have

$$H(X|\hat{X}) = \Pr[\hat{X} = 0]H(X|\hat{X} = 0) + \Pr[\hat{X} = 1]H(X|\hat{X} = 1)$$

= $\Pr[Y = 0]H(X|Y = 0) + \Pr[Y = 1]H(X|Y = 1)$
= $H(0.7) = 0.8813.$

$$P_e = \Pr[X = 0, Y = 1] + \Pr[X = 1, Y = 0]$$

= 0.3.

c. The Fano inequality is

$$H(X|\hat{X}) = 0.8813 \le H(P_e) + P_e \log_2(2-1)$$

= $H(0.3) = 0.8813.$

which is thus satisfied with equality.

7. (2 points) Consider an i.i.d. source X^n with a Ber(0.3) distribution.

a. If k is the number of ones in a sequence x^n with n = 5, for which values of k we have that $x^n \in A_{\epsilon}^{(5)}(X)$ for $\epsilon = 0.2$?

b. Characterize the smallest set B of sequences with probability at least 0.24.

c. How many sequences are in the intersection between $A_{\epsilon}^{(5)}(X)$ for $\epsilon = 0.2$ and B?

Sol.: We have H(X) = 0.8813 bits. By definition of typical set, we need to verify that

$$0.6813 \le -\frac{1}{5} \sum_{i=1}^{5} \log p(x_i) \le 1.0813.$$

We can calculate the following probabilities:

- for sequences with $k = 0, -\frac{5}{5}(\log_2 0.7) = 0.5146;$
- for sequences with $k = 1, -\frac{1}{5}(4\log_2 0.7 + \log_2 0.3) = 0.7591;$
- for sequences with $k = 2, -\frac{1}{5}(3\log_2 0.7 + 2\log_2 0.3) = 1.0035;$
- for sequences with k = 3, $-\frac{1}{5}(2\log_2 0.7 + 3\log_2 0.3) = 1.2480$;
- for sequences with k = 4, $-\frac{1}{5}(1\log_2 0.7 + 4\log_2 0.3) = 1.4925$;

• for sequences with $k = 5, -\frac{5}{5}(\log_2 0.3) = 1.7370.$

Therefore, the set $A_{0,1}^{(5)}(X)$ contains all sequences with k = 1 and k = 2 ones. b. This contains the sequence with k = 0 and one of the sequences with k = 1. The probability of this set is $0.7^5 + 0.7^4 \cdot 0.3 = 0.2401$. Note that the most likely sequence alone (k = 0) has probability $0.7^5 = 0.168$.

c. Only one sequence, namely one with k = 1.