ECE 776 - Information theory (Spring 2012)
 Midterm

Please give well-motivated answers.
1 (2 points). Prove that for any source $X \sim p(x)$ with $x \in \mathcal{X}$ and any binary prefix-free code with lengths $l(x), x \in \mathcal{X}$, we have the relationship

$$
E[l(X)]=H(X)+D(p(x) \| r(x))-\log c,
$$

where $r(x)=2^{-l(x)} / c$ and $c=\sum_{x \in \mathcal{X}} 2^{-l(x)}$. Conclude that, if the distribution is dyadic (i.e., if $p(x)=2^{-k(x)}$ for integers $\left.k(x)\right)$, then we can find a prefix-free code with average length equal to $H(X)$ (Hint: Write explicitly the right-hand side of the equality above).

Sol.:

$$
\begin{aligned}
& -\sum_{x \in \mathcal{X}} p(x) \log p(x)+\sum_{x \in \mathcal{X}} p(x)(\log (p(x))-\log (r(x)))-\log c \\
= & \left.-\sum_{x \in \mathcal{X}} p(x) \log p(x)+\sum_{x \in \mathcal{X}} p(x)(\log p(x))+l(x)\right) \\
= & E[l(X)] .
\end{aligned}
$$

If the distribution is dyadic, then we can choose $l(x)=k(x)$ (since this satisfies Kraft's inequality), and thus $r(x)=2^{-k(x)}=p(x)$ since $c=1$. It follows that $D(p(x) \| r(x))=0$ and thus $E[l(X)]=H(X)$.
2. (1 point) Give an example of a source for which the rate required by a Shannon code is close to $H(X)+1$.

Sol.: Consider a source $X \sim \operatorname{Ber}(\epsilon)$ for a very small $\epsilon>0$. Then, we have $H(X) \simeq 0$, and $R=1$ for a Shannon code.

3 (3 points). Consider a source $X^{n} \sim p\left(x^{n}\right)\left(x^{n} \in \mathcal{X}^{n}\right)$, and any fixed-to-fixed source code with rate R (i.e., encoder $W\left(X^{n}\right)$ and decoder $\hat{X}^{n}(W)$ with W consisting of $n R$ bits). The probability of error is $P_{e}=\operatorname{Pr}\left[\hat{X}^{n} \neq X^{n}\right]$. We want to prove the inequality

$$
\begin{equation*}
\left.P_{e} \geq \operatorname{Pr}-\frac{1}{n} \log p\left(X^{n}\right) \geq R+\gamma\right]-2^{-n \gamma} \tag{1}
\end{equation*}
$$

for any such code and any $\gamma>0$. To this end, define B as the set of sequences x^{n} that the code reproduces correctly and T as the set $\left\{x^{n}:-\frac{1}{n} \log p\left(x^{n}\right) \geq R+\gamma\right\}$, and answer the following.
a. Show that $\operatorname{Pr}[T] \leq P_{e}+\operatorname{Pr}[T \cap B]$ (Hint: The events B and B^{c} form a partition of the probability space).
b. Prove the upper bound $\operatorname{Pr}[T \cap B] \leq 2^{-n \gamma}$ (Hint: Use the definition of T and the cardinality of B).
c. Point a. and b. prove (1). Now, use (1) to show that if $R<H(X)$, then $P_{e} \rightarrow 1$ for $n \rightarrow \infty$.

Sol.: a. We have

$$
\begin{aligned}
\operatorname{Pr}[T] & =\operatorname{Pr}\left[T \cap B^{c}\right]+\operatorname{Pr}[T \cap B] \\
& \leq \operatorname{Pr}\left[B^{c}\right]+\operatorname{Pr}[T \cap B] \\
& =P_{e}+\operatorname{Pr}[T \cap B]
\end{aligned}
$$

where we have used the fact that $P_{e}=\operatorname{Pr}\left[B^{c}\right]$.
b. We have

$$
\begin{aligned}
\operatorname{Pr}[T \cap B] & \leq|B| 2^{-n(R+\gamma)} \\
& \leq 2^{n R} 2^{-n(R+\gamma)} \\
& =2^{-n \gamma}
\end{aligned}
$$

where the first inequality follows by the definition of T (every sequence in T satisfies $p\left(x^{n}\right) \leq$ $\left.2^{-n(R+\gamma)}\right)$. The second inequality follows since $|B| \leq 2^{n R}$.
c. For sufficiently small γ, if $R<H(X)$, by the law of large numbers, we have that $\operatorname{Pr}\left[-\frac{1}{n} \log p\left(X^{n}\right) \geq R+\gamma\right] \rightarrow 1$.
4. (2 points) a. Calculate the entropy rate of the process $X_{k}=X_{k-1} \oplus Z_{k}$ with $Z_{k} \sim \operatorname{Ber}(p)$ and i.i.d. (X_{k} is assumed to be stationary).
b. Repeat for $X_{k}=X_{k-1} \oplus X_{k-2} \oplus Z_{k}$.

Sol.: a. Since X_{k} is stationary, we can write

$$
\begin{aligned}
H(\mathcal{X}) & =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =H\left(X_{n} \mid X_{n-1}\right) \\
& =H(Z) \\
& =H(p)
\end{aligned}
$$

b. Similarly, we have

$$
\begin{aligned}
H(\mathcal{X}) & =\lim _{n \rightarrow \infty} H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =H\left(X_{n} \mid X_{n-1}, X_{n-2}\right) \\
& =H(Z) \\
& =H(p)
\end{aligned}
$$

where the second equality follows since, given X_{n-1}, X_{n-2}, X_{n} does not depend on the samples X_{n-k} with $k>3$.
5. (2 points) Find a Huffman code and a Shannon code for the source ($1 / 3,1 / 5,1 / 5,2 / 15,2 / 15$). Compare their average length.
6. (2 points) Consider random variable $X \sim \operatorname{Ber}(0.5)$, and a random variable Y distributed as follows: if $X=0, Y$ equals 0 with probability 0.7 and 1 with probability 0.3 ; if $X=1, Y$ equals 1 with probability 0.7 and 0 with probability 0.3 .
a. Find the function $\hat{X}=f(Y) \in\{0,1\}$ that minimizes $\operatorname{Pr}[\hat{X} \neq X]$.
b. For the given estimator $\hat{X}=f(Y)$, calculate $H(X \mid \hat{X})$ and P_{e}.
c. Compare the results at the previous point with Fano inequality.

Sol.: a. By inspection of the joint distribution, we have

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 .
\end{aligned}
$$

b. We have

$$
\begin{aligned}
H(X \mid \hat{X}) & =\operatorname{Pr}[\hat{X}=0] H(X \mid \hat{X}=0)+\operatorname{Pr}[\hat{X}=1] H(X \mid \hat{X}=1) \\
& =\operatorname{Pr}[Y=0] H(X \mid Y=0)+\operatorname{Pr}[Y=1] H(X \mid Y=1) \\
& =H(0.7)=0.8813 .
\end{aligned}
$$

$$
\begin{aligned}
P_{e} & =\operatorname{Pr}[X=0, Y=1]+\operatorname{Pr}[X=1, Y=0] \\
& =0.3
\end{aligned}
$$

c. The Fano inequality is

$$
\begin{aligned}
H(X \mid \hat{X}) & =0.8813 \leq H\left(P_{e}\right)+P_{e} \log _{2}(2-1) \\
& =H(0.3)=0.8813
\end{aligned}
$$

which is thus satisfied with equality.
7. (2 points) Consider an i.i.d. source X^{n} with a $\operatorname{Ber}(0.3)$ distribution.
a. If k is the number of ones in a sequence x^{n} with $n=5$, for which values of k we have that $x^{n} \in A_{\epsilon}^{(5)}(X)$ for $\epsilon=0.2$?
b. Characterize the smallest set B of sequences with probability at least 0.24 .
c. How many sequences are in the intersection between $A_{\epsilon}^{(5)}(X)$ for $\epsilon=0.2$ and B ?

Sol.: We have $H(X)=0.8813$ bits. By definition of typical set, we need to verify that

$$
0.6813 \leq-\frac{1}{5} \sum_{i=1}^{5} \log p\left(x_{i}\right) \leq 1.0813
$$

We can calculate the following probabilities:

- for sequences with $k=0,-\frac{5}{5}\left(\log _{2} 0.7\right)=0.5146$;
- for sequences with $k=1,-\frac{1}{5}\left(4 \log _{2} 0.7+\log _{2} 0.3\right)=0.7591$;
- for sequences with $k=2,-\frac{1}{5}\left(3 \log _{2} 0.7+2 \log _{2} 0.3\right)=1.0035$;
- for sequences with $k=3,-\frac{1}{5}\left(2 \log _{2} 0.7+3 \log _{2} 0.3\right)=1.2480$;
- for sequences with $k=4,-\frac{1}{5}\left(1 \log _{2} 0.7+4 \log _{2} 0.3\right)=1.4925$;
- for sequences with $k=5,-\frac{5}{5}\left(\log _{2} 0.3\right)=1.7370$.

Therefore, the set $A_{0.1}^{(5)}(X)$ contains all sequences with $k=1$ and $k=2$ ones.
b. This contains the sequence with $k=0$ and one of the sequences with $k=1$. The probability of this set is $0.7^{5}+0.7^{4} \cdot 0.3=0.2401$. Note that the most likely sequence alone $(k=0)$ has probability $0.7^{5}=0.168$.
c. Only one sequence, namely one with $k=1$.

