
ECE 788 - Optimization for wireless networks
Midterm

Please provide clear and complete answers.

PART I: Questions - Provide a proof or a convincing example to answer the following:

Q.1. (1 point) Is {(x, t) ∈ Rn ×R| kxk2 ≥ t} a convex set?
Sol.: No. It is enough to sketch the case n = 1 to recognize this.

Q.2. (1 point) If C and D are convex set, is C+D = {x = x1+x2 with x1 ∈ C and x2 ∈ D}
convex?
Sol.: To prove that C +D is convex one must verify that for any x, y ∈ C +D the convex
combination λx + (1 − λ)y ∈ C + D with 0 ≤ λ ≤ 1. This is easily proved since we have
x = x1 + x2 and y = y1 + y2 with x1, y1 ∈ C and x2, y2 ∈ D so that

λx+ (1− λ)y = λ(x1 + x2) + (1− λ)(y1 + y2) =

= [λx1 + (1− λ)y1] + [λx2 + (1− λ)y2],

which belongs to C +D since λx1 + (1− λ)y1 ∈ C and λx2 + (1− λ)y2 ∈ D by definition of
convexity.

Q.3. (1 point) Can the set C =

½
x ∈ R2

¯̄̄̄°°°°∙ 1 2
3 1

¸ ∙
x1
x2

¸
+

∙
0
1

¸°°°°
2

≤ 3x1 + 2x2
¾
be

written as a Linear Matrix inequality (LMI)? If so, write the corresponding LMI.

Sol.: Yes, defining A=
∙
1 2
3 1

¸
, b =

∙
0
1

¸
and c =

∙
3
2

¸
, the constraint in the definition

of C can be written as kAx+ bk2 ≤ cTx or kAx+ bk22 ≤ (cTx)2, which is equivalent to

C =

½
x ∈ R2

¯̄̄̄∙
(cTx)I2 Ax+ b
(Ax+ b)T cTx

¸
º 0

¾
(1)

with I2 =

∙
1 0
0 1

¸
. In fact, if cTx = 3x1 + 2x2 > 0 (or equivalently kAx+ bk22 < (cTx)2)

the two conditions in the original definition of C and in (1) are equivalent due to the Schur
complement properties. Moreover, if cTx = 0 we have (from the definition of C) that
Ax + b = 0, and the resulting all-zero matrix is included in the set (1). We can then
conclude that the original definition of C and (1) are equivalent.

Q.4. (1 point) Are these functions convex, concave or neither? (i) f(x, y) = exp(x
2

y
) on

R×R++; (ii) f(x) = 1/ log x with x > 1; (iii) f(x) =

Ã
nY
i=1

x
1/2
i

!1/n
with xi ≥ 0.

Sol.: (i) exp(x) is a convex function and non-decreasing, x2

y
is convex on R×R++ (prove,

e.g., by using the perspective function property) =⇒ exp(x
2

y
) is convex on R×R++.

(ii) 1/x is convex for x > 0 and its extended-value extension is non-increasing, log x is
concave and non-negative for x > 1 =⇒ 1/ log x is convex for x > 1.
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(iii)

Ã
nY
i=1

x

!1/n
is concave and its extended-value extension is non-decreasing in each argu-

ment for x ≥ 0, x1/2i is concave and non-negative for xi ≥ 0 =⇒
Ã

nY
i=1

x
1/2
i

!1/n
is concave for

xi ≥ 0.

PART II: Problems -

P.1. (2 points) Consider the small network in figure with two sources S1 and S2 that
communicate both with destination D. Weights of the edges represent the link capacities.
Each source transmits with rate xi ≥ 0 (i = 1, 2). We are interested in maximizing a network
utility fo(x1, x2).
(i) Write the optimization problem.
Sol.: Defining

A=

⎡⎣ 1 0
0 1
1 1

⎤⎦ , c =
⎡⎣ 22
3

⎤⎦ , x = ∙ x1
x2

¸
we have

maximize
x

fo(x1, x2)

s.t.
½

Ax ¹ c
x º 0

(ii) For each network utility listed in the following, specify if the problem is convex and
possibly the type of convex problem. If the problem is convex, evaluate optimal value p∗ and
the set Xopt of optimal solutions. (Hint : sketch feasible set and level curves of the objective
functions).

(ii.1) Sum-rate fo(x1, x2) = x1 + x2.
Sol.: This is a LP problem. By sketching the feasible region and the level curves of the
objective function, it is easy to see that Xopt = {x| x1+ x2 = 3 and 1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2}
and p∗ = 3.

(ii.2) Minimum rate fo(x1, x2) = min{x1, x2}.
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Sol.: The problem is convex since the objective is the pointwise minimum of convex (affine)
functions and the constraints are all affine. Again, using geometric reasoning, it can be seen
that the optimal solution is when x1 = x2, which leads to Xopt = {[3/2 3/2]T} and p∗ = 3.

(ii.3) fo(x1, x2) = 2
7
x21 +

2
5
x22.

Sol.: The problem is not convex since the utility is not concave.

(ii.4) fo(x1, x2) = −27x21 − 2
5
x22.

Sol.: The problem is QP and the optimal value is clearly p∗ = 0 with Xopt = {[0 0]T}.
P.2. (2 points) (i) Give an explicit solution (optimal value p∗ and the set Xopt) for the
following problem (a 6= 0)

minimize
x

cTx

s.t. aTx ≤ b

Sol.: By using the necessary and sufficient condition for optimality given convex problems
with differentiable objective we have that a point x∗ is optimal if and only if it satisfies:

∇fo(x∗)T (y − x∗) ≥ 0 for all y ∈ C,

where C is the feasible set. In our case, this condition reads:

cT (y − x∗) ≥ 0 for aTy ≤ b.

By simple geometrical arguments, it can be seen that this is possible if and only if c is parallel
to a but with opposite sign, i.e., c = λa with λ ≤ 0. In this case, the optimal set is such
that the constraint is active, i.e., Xopt = {x| aTx = b} and p∗ = λaTx = λb. If the condition
c = λa with λ ≤ 0 is not satisfied, then the problem is unbounded below (p∗ = −∞) (see
problem 4.8 (b)).

(ii) Give numerical values for p∗ and the set Xopt for the problem at the previous point with
a= [1 2]T , c = [−3 −6]T and b = 4. Repeat for a= [1 2]T , c = [−3 −5]T and b = 4.
Sol.: In the first case, the condition derive at the previous point is satisfied with λ = −3, so
that Xopt = {x| x1 + 2x2 = 4} and p∗ = λb = −12. In the second case, the condition is not
satisfied and therefore we have p∗ = −∞.

(iii) Give a numerical solution (optimal value p∗ and the set Xopt) for the following problem

minimize
x

3x1 + 2x2 + x3

s.t. x º 0, 1Tx = 1
Sol.: We have that 3x1 + 2x2 + x3 ≥ 1 if x º 0, 1Tx = 1, and this value is attained only for
x = [0 0 1]T . Therefore, we can conclude that p∗ = 1 and Xopt = {[0 0 1]T}.
P.3. (2 points) Consider the uplink channel of a wireless system where the signal-to-noise-
plus-interference ratio for the kth user reads

SINRk =
GkPk

N +
P

j 6=kGjPj
,
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where Pj are the user powers, Gj are the channel power gains andN the noise power. Assume
that we have K = 2 users (k = 1, 2).

(i) Write the problem of maximizing SINR1 (first user) under maximum power constraints
(for both users) and minimum SINR constraint for the second user (SINR2 ≥ γ). Is it a
convex problem? Identify the class to which the problem belongs.

Sol.: The problem is

maximize
P

G1P1
N +G2P2

s.t.
½

Pk ≤ Pk,max k = 1, 2
G2P2

N+G1P1
≥ γ

It is a linear-fractional problem (notice that the second constraint is affine in P : G2P2 ≥
γ (N +G1P1)), thus quasi-convex (the objective is quasi-linear). We know that a LFP can
be formulated as a LP after appropriate transformations (see p. 151). Also, the problem
can be seen as a GP if formulated as

minimize
P

N +G2P2
G1P1

=
N

G1
P−11 +

G2

G1
P−11 P2

s.t.

( Pk
Pk,max

≤ 1 k = 1, 2
γ
³

N
G2
P−12 + G1

G2
P−12 P1

´
≤ 1 .

(ii) Consider now the problem of maximizing the minimum of the two SINRs under maximum
power constraints. Answer the same question as above.
Sol.: The problem is

maximize
P

min

½
G1P1

N +G2P2
,

G2P2
N +G1P1

¾
s.t. Pk ≤ Pk,max k = 1, 2

It is a quasi-convex problem since the constraints are convex (affine) and the objective is the
pointwise minimum of quasi-convex functions and thus quasi-convex (alternatively, you can
prove quasi-convexity by using the definition, that is, by evaluating the sublevel sets).

(iii) Assume now that we want to maximize the geometric mean of the SINRs ((SINR1 ·
SINR2)

1/2) under power constraints. Can the problem be formulated as a convex problem
after appropriate transformations? How?

Sol.: Taking the square of the objective function, the problem can be written equivalently
as

maximize
P

G1P1
N +G2P2

· G2P2
N +G1P1

s.t. Pk ≤ Pk,max k = 1, 2.
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Now, this is equivalent to

minimize
P

N +G2P2
G1P1

· N +G1P1
G2P2

s.t. Pk ≤ Pk,max k = 1, 2.

which is easily proved to be a GP problem since the objective is a posynomial in P .

(iv) Finally, we are interested in minimizing the cost (total power) under quality-of-service
constraints on the two users SINR1 ≥ γ1 and SINR2 ≥ γ2. Formulate the problem and
define the class it belongs to.

Sol.: The problem reads

minimize
P

P1 + P2

s.t.
G1P1

N +G2P2
≥ γ1,

G2P2
N +G1P1

≥ γ2

and it is easily shown to be LP.
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