## ECE 788: Network Information Theory Assignment 12 (due on Dec. 7)

**1.** Consider a wireline network  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  in which we assign a cost a(u, v) to each edge  $(u, v) \in \mathcal{E}$ . Sending x packets over edge  $(u, v) \in \mathcal{E}$  then costs  $a(u, v) \cdot x$  (x can be any real number). Suppose that we want to transmit R packets per edge use from source s to the destinations  $d_1, ..., d_{|\mathcal{D}|}$  and that we are interested in minimizing the cost of this operation.

**1.1.** Assuming a single destination  $d_1$  (i.e.,  $|\mathcal{D}| = 1$ ), justify the reason why the linear program<sup>1</sup> below solves the problem

$$\min_{f(u,v) \ge 0} \sum_{(u,v) \in \mathcal{E}} a(u,v) f(u,v)$$

subject to

$$\sum_{v: (u,v)\in\mathcal{E}} f(u,v) - \sum_{u \ (v,u)\in\mathcal{E}} f(v,u) = \begin{cases} R & \text{for } u=s\\ -R & \text{for } u=d_1\\ 0 & \text{for all other } u\in\mathcal{V} \end{cases}$$
 (1)

(Hint: If function f(u, v) satisfy the condition above, then R is achievable, how? What is the meaning of variable f(u, v)?)

**1.2.** Now consider multiple destinations (i.e., multicasting). First, find  $|\mathcal{D}|$  functions  $f^{(t)}(u,v) \geq 0$ ,  $t = 1, ..., |\mathcal{D}|$  that satisfy (1) for each destination, i.e.,

$$\sum_{v: (u,v)\in\mathcal{E}} f^{(t)}(u,v) - \sum_{u \ (v,u)\in\mathcal{E}} f^{(t)}(v,u) = \begin{cases} R & \text{for } u=s\\ -R & \text{for } u=d_t\\ 0 & \text{for all other } u\in\mathcal{V} \end{cases}$$
 (2)

Having done this, for each edge, take  $\max_t f^{(t)}(u, v)$  to be the capacity of edge  $(u, v) \in \mathcal{E}$ . Would a network  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  with such edge capacities be able to support a multicast rate of R? (Hint: To show this, you have to argue that the min-cut towards each destination is at least R, since network coding achieves the min-cut rate for multicasting).

- **1.3.** Given the result at the point above, formulate a linear program that solves the minimum cost problem for multicasting (Hint:  $z(u, v) = \max_t f^{(t)}(u, v)$  satisfies  $z(u, v) \ge f^{(t)}(u, v)$ , which is a linear constraint... this requires some thinking).
- **2.** Consider a polynomial  $P(x_1, x_2, ..., x_N) \in \mathbb{F}[x_1, x_2, ..., x_N]$  for some finite field  $\mathbb{F}$ , as defined in class. Suppose that  $x_i$  are drawn uniformly and independently from  $\mathbb{F}$ . What can we say about the probability that  $P(x_1, x_2, ..., x_N) \neq 0$ ? Let us prove that  $\Pr[P(x_1, x_2, ..., x_N) = 0] \geq \prod_{i=1}^{N} \left(1 \frac{d_i}{|\mathbb{F}|}\right)$ , where  $d_i$  is the degree of the polynomial in  $x_i$ .
- **2.1.** Proceed by induction. First prove the result for N = 1. (Hint: What is the probability of choosing a root of  $P(x_1)$ ?)
- **2.2.** Now, assume that the result is true for N-1 and prove it for N (Hint: A polynomial  $P(x_1, x_2, ..., x_N)$  can be written as a polynomial in  $x_N$  with coefficients in  $P(x_1, x_2, ..., x_{N-1})$ ). Remark: This result can be used to prove that linear random coding succeeds with high probability if the field size of the packets is large enough (how?).

<sup>&</sup>lt;sup>1</sup>A linear program is an optimization problem with linear cost function and constraints.