ECE 232 - Circuits and Systems II
 Test 1

Please provide clear and complete answers. Don't forget to specify the units of measure!

In the circuit shown in the figure, the first switch closes at time $t=0$ and the second closes at time 2 ms . Before time $t=0$, the circuit was in the same condition for a long time.
a. Find the current in the inductor, $i_{L}(t)$, for $0 \leq t \leq 2 \mathrm{~ms}$.
b. Find the current in the inductor, $i_{L}(t)$, for $t \geq 2 \mathrm{~ms}$ (Hint: it may be useful to remember that the Thevenin equivalent of a current source of current I_{S} in parallel with a resistance R_{S} is given by a voltage source of voltage $R_{S} I_{S}$ in series with a resistor of resistance R_{S}).
c. Plot $i_{L}(t)$ for $0 \leq t \leq 4 \mathrm{~ms}$.
d. Find the current $i_{0}(t)$ (see figure) for $t \geq-1 \mathrm{~ms}$.
e. In the period $0 \leq t \leq 2 \mathrm{~ms}$, how much overall energy is dissipated by the series of resistors of resistance 4Ω and 6Ω that are in series with the inductor?

Figure 1:

Sol.:
a. For $t=0^{-}$, the inductor behaves as a short circuit, and from Ohm's law, we have

$$
i_{L}\left(0^{-}\right)=\frac{40}{8+2+6+4}=2 \mathrm{~A} .
$$

And, by continuity, we also have $i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=i_{L}(0)=2 A$.
For $0<t<2 \mathrm{~ms}$, in order to evaluate current $i_{L}(t)$, it is sufficient to focus on the RL circuit with equivalent resistance $R_{e q}=6+4=10 \Omega$, and hence time constant $\tau=L / R_{e q}=1$ $m s$. This is because the part of the circuit that includes the voltage source is in parallel to a short circuit and thus does not contribute to the current $i_{L}(t)$ (see also problems in the assignments). Therefore, we can write

$$
i_{L}(t)=i_{L}(0) e^{-t / \tau}=2 e^{-1000 t} A
$$

for $0 \leq t \leq 2 \mathrm{~ms}$, where equality for $t=0$ and $t=2 \mathrm{~ms}$ follows by continuity. Note that $i_{L}(\infty)=0$.
b. For $t \geq 2 \mathrm{~ms}$, we transform the current source into a voltage source using the Thevenin equivalent with resistance $R_{T h}=4 \Omega$ and voltage source $V_{T h}=4 V$. This way, we obtain that $i_{L}(t)$ can be calculated from a RL circuit with $R_{e q}=6+4=10 \Omega$ and voltage source $V_{T h}=4 \mathrm{~V}$. Note that the time constant is still $\tau=L / R_{e q}=1 \mathrm{~ms}$, but

$$
i_{L}(\infty)=-\frac{4}{10}=-0.4 \mathrm{~A}
$$

We can then calculate

$$
\begin{aligned}
i_{L}(t) & =i_{L}(\infty)+\left(i_{L}\left(2 \cdot 10^{-3}\right)-i_{L}(\infty)\right) e^{-1000\left(t-2 \cdot 10^{-3}\right)} \\
& =-0.4+(0.27+0.4) e^{-1000\left(t-2 \cdot 10^{-3}\right)} \\
& =-0.4+0.67 e^{-1000\left(t-2 \cdot 10^{-3}\right)} A
\end{aligned}
$$

where we have used the continuity of the current in the inductor to obtain $i_{L}\left(2 \cdot 10^{-3}\right)=$ $2 e^{-2}=0.27$ A.
d. For $-1 \mathrm{~ms} \leq t \leq 0$, we clearly have $i_{0}(t)=0$. For all other times, we have

$$
i_{0}(t)=4-i_{L}(t),
$$

where $i_{L}(t)$ was calculated above.
e. The initial energy stored in the inductor is

$$
w(0)=\frac{1}{2} L i_{L}(0)^{2}=5 \cdot 10^{-3} \cdot 4=20 m J
$$

while at $t=2 m s$ the remaining energy is

$$
w\left(2 \cdot 10^{-3}\right)=\frac{1}{2} L i_{L}\left(2 \cdot 10^{-3}\right)^{2}=0.36 \mathrm{~mJ} .
$$

The energy that is lost, namely $20-0.36 m J=19.64 m J$, has been dissipated by the two resistors at hand.

