ECE 232-Circuits and Systems II
 Test 1

Please provide clear and complete answers. Don't forget to specify the units of measure!
Consider the circuit in the figure. The first switch opens at time $t=0 \mathrm{~s}$ and the second closes at time 1 s . Before time $t=0 \mathrm{~s}$, the circuit was in the same configuration for a long time.

Figure 1:
a. (2 points) Find $i(0)$.

Sol.: We have $i(0)=2 /\left(R_{1}| | R_{2}\right)=2 \mathrm{~A}$.
b. (2 points) Find $i(t)$ in the interval $0 \leq t \leq 1 \mathrm{~s}$.

Sol.: In this interval, we have $i(\infty)=2 / R_{1}=1 \mathrm{~A}$ and $\tau=L / R_{1}=1 / 2$, and hence we obtain

$$
\begin{aligned}
i(t) & =1+(2-1) e^{-2 t} \\
& =1+e^{-2 t} \mathrm{~A} .
\end{aligned}
$$

c. (2 points) Plot $i(t)$ in the interval $0 \leq t \leq 1 \mathrm{~s}$.

Sol.: Please see book or class notes for the usual procedure.
d. (2 points) Calculate the energy dissipated by resistor R_{1} in the interval $0 \leq t \leq 1 \mathrm{~s}$.

Sol.: The energy at hand is given by

$$
\begin{aligned}
E_{R_{1}} & =\int_{0}^{1} R_{1} i(t)^{2} d t=2 \int_{0}^{1}\left(1+e^{-2 t}\right)^{2} d t \\
& =2 \int_{0}^{1}\left(1+e^{-4 t}+2 e^{-2 t}\right) d t \\
& =2+\frac{2}{-4}\left(e^{-4}-1\right)+\frac{4}{-2}\left(e^{-2}-1\right) \\
& =2-\frac{1}{2}\left(e^{-4}-1\right)-2\left(e^{-2}-1\right) \\
& =\frac{9}{2}-\frac{1}{2} e^{-4}-2 e^{-2}=4.22 \mathrm{~J} .
\end{aligned}
$$

e. (2 points) Evaluate the voltage $v(t)$ for $t \geq 1 \mathrm{~s}$ (note that the initial current in the inductor on the left is zero).

Sol.: The equivalent inductor has inductance $L_{e q}=\left(L_{1} \| L_{2}\right)=1 / 2 \mathrm{H}$ and thus we have $\tau=1 / 4 \mathrm{~s}$. Therefore, we get that the current flowing in the equivalent inductor is

$$
i_{e q}(t)=i_{e q}(\infty)+\left(i_{e q}(1)-i_{e q}(\infty)\right) e^{-4(t-1)}
$$

We can calculate $i_{e q}(\infty)=2 / 2=1 \mathrm{~A}$ and $i_{e q}(1)=i(1)=1+e^{-2} \mathrm{~A}$, and thus

$$
\begin{aligned}
i_{e q}(t) & =1+e^{-2} e^{-4(t-1)} \\
& =1+e^{-4(t-1)-2} \\
& =1+e^{-4(t-1 / 2)} \mathrm{A} .
\end{aligned}
$$

The voltage is then obtained as

$$
v(t)=L_{e q} \frac{d i_{e q}(t)}{d t}=-2 e^{-4(t-1 / 2)}
$$

