ECE 232-Circuits and Systems II
 Test 1

Please provide clear and complete answers. Don't forget to specify the units of measure!
Consider the circuit in Fig. 1. The switch was in position a for a long time before it moves to position b at time $t=0$. Then it moves to position c at time $t=2 \mathrm{~ms}$.

Figure 1:
a. Calculate the current $i_{L}(0)$.
b. Calculate $i_{L}(t)$ for $0 \leq t \leq 2 \mathrm{~ms}$.
c. Calculate $i_{L}(t)$ for $t \geq 2 \mathrm{~ms}$.
d. Calculate the voltage $v(t)$ across the inductors for $t \geq 0^{+}$.
e. Plot $v(t)$ and $i_{L}(t)$.
f. Calculate the energy stored on the inductor at time $t=0$. What is the percentage of this energy that is released by the inductor in the interval $0 \leq t \leq 2 \mathrm{~ms}$ and in the interval $t \geq 2$ $m s$? Answer this question by integrating the power released by the inductor over time.

Sol.:
a. For $t=0^{-}$, the current that flows on the parallel of the two 100Ω resistors is $\frac{120}{10+50}=2 \mathrm{~A}$ so that, using the current division rule we get

$$
i_{L}\left(0^{-}\right)=2 \cdot \frac{1}{2}=1 A
$$

and by continuity of the current over the inductor, we get $i_{L}\left(0^{-}\right)=i_{L}\left(0^{+}\right)=i_{L}(0)=1 \mathrm{~A}$.
b. In this interval, the equivalent circuit is RL with time constant $\tau=\frac{100 \times 10^{-3}}{100}=1 \mathrm{~ms}$. The final value is zero, so that we obtain

$$
i_{L}(t)=e^{-1000 t}, \text { for } 0 \leq t \leq 2 \mathrm{~ms}
$$

Figure 2:
c.In this interval, the circuit is RL with time constant $\tau=\frac{100 \times 10^{-3}}{150}=\frac{2}{3} \mathrm{~ms}$. The initial value is

$$
i_{L}\left(2 \times 10^{-3}\right)=e^{-2}=0.13 A
$$

so that

$$
i_{L}(t)=0.13 e^{-1500\left(t-2 \times 10^{-3}\right)}, \text { for } t \geq 2 \mathrm{~ms}
$$

d. The voltage is obtained as

$$
\begin{aligned}
v(t) & =L \frac{d i(t)}{d t} \\
& =100 \times 10^{-3} \times\left(-1000 e^{-1000 t}\right) \\
& =-100 e^{-1000 t} \text { for } 0<t<2 \mathrm{~ms}
\end{aligned}
$$

and

$$
\begin{aligned}
v(t) & =L \frac{d i(t)}{d t} \\
& =100 \times 10^{-3} \times\left(-\frac{3000}{2}\right) \times\left(0.13 e^{-\frac{3000}{2}\left(t-2 \times 10^{-3}\right)}\right) \\
& =-19.5 e^{-1500\left(t-2 \times 10^{-3}\right)} \text { for } t>2 \mathrm{~ms}
\end{aligned}
$$

e. Plots are shown in the figure. Note that the voltage is discontinuous.
f. The initial energy is $E=\frac{1}{2} L i(0)^{2}=\frac{1}{2} 0.1 \cdot 1=0.05 J=50 \mathrm{~mJ}$. The amount of power dissipated in the interval $0 \leq t \leq 2 \mathrm{~ms}$ is the negative of

$$
\begin{aligned}
& \int_{0}^{2 \times 10^{-3}} v(t) i(t) d t \\
= & \int_{0}^{2 \times 10^{-3}}-100 e^{-1000 t} \cdot e^{-1000 t} d t \\
= & -100 \int_{0}^{2 \times 10^{-3}} e^{-2000 t} d t \\
= & \frac{-100}{-2000}\left[e^{-2000 t}\right]_{0}^{2 \times 10^{-3}} \\
= & \frac{1}{20}\left(e^{-4}-1\right)=-0.049,
\end{aligned}
$$

which is the $\frac{0.049}{0.05}=0.98 \%$ of the overall initial energy.

