ECE 232 - Circuits and Systems II Test 1

Please provide clear and complete answers. Don't forget to specify the units of measure!

Consider the circuit in Fig. 1. The switch was in position a for a long time before it moves to position b at time t = 0. Then it moves to position c at time t = 2 ms.

Figure 1:

- a. Calculate the current $i_L(0)$.
- b. Calculate $i_L(t)$ for $0 \le t \le 2 ms$.
- c. Calculate $i_L(t)$ for $t \ge 2 ms$.
- d. Calculate the voltage v(t) across the inductors for $t \ge 0^+$.
- e. Plot v(t) and $i_L(t)$.

f. Calculate the energy stored on the inductor at time t = 0. What is the percentage of this energy that is released by the inductor in the interval $0 \le t \le 2 ms$ and in the interval $t \ge 2 ms$? Answer this question by integrating the power released by the inductor over time.

Sol:

a. For $t = 0^-$, the current that flows on the parallel of the two 100 Ω resistors is $\frac{120}{10+50} = 2A$ so that, using the current division rule we get

$$i_L(0^-) = 2 \cdot \frac{1}{2} = 1 A,$$

and by continuity of the current over the inductor, we get $i_L(0^-) = i_L(0^+) = i_L(0) = 1$ A.

b. In this interval, the equivalent circuit is RL with time constant $\tau = \frac{100 \times 10^{-3}}{100} = 1 \text{ ms}$. The final value is zero, so that we obtain

$$i_L(t) = e^{-1000t}$$
, for $0 \le t \le 2 ms$

c.In this interval, the circuit is RL with time constant $\tau = \frac{100 \times 10^{-3}}{150} = \frac{2}{3} ms$. The initial value is

$$i_L(2 \times 10^{-3}) = e^{-2} = 0.13 \ A.$$

so that

$$i_L(t) = 0.13e^{-1500(t-2 \times 10^{-3})}$$
, for $t \ge 2 ms$.

d. The voltage is obtained as

$$v(t) = L \frac{di(t)}{dt}$$

= 100 × 10⁻³ × (-1000e^{-1000t})
= -100e^{-1000t} for 0 < t < 2 ms

and

$$v(t) = L \frac{di(t)}{dt}$$

= $100 \times 10^{-3} \times (-\frac{3000}{2}) \times (0.13e^{-\frac{3000}{2}(t-2\times 10^{-3})})$
= $-19.5e^{-1500(t-2\times 10^{-3})}$ for $t > 2 ms$

e. Plots are shown in the figure. Note that the voltage is discontinuous.

f. The initial energy is $E = \frac{1}{2}Li(0)^2 = \frac{1}{2}0.1 \cdot 1 = 0.05 \ J = 50 \ mJ$. The amount of power dissipated in the interval $0 \le t \le 2 \ ms$ is the negative of

$$\int_{0}^{2 \times 10^{-3}} v(t)i(t)dt$$

$$= \int_{0}^{2 \times 10^{-3}} -100e^{-1000t} \cdot e^{-1000t}dt$$

$$= -100 \int_{0}^{2 \times 10^{-3}} e^{-2000t}dt$$

$$= \frac{-100}{-2000} \left[e^{-2000t}\right]_{0}^{2 \times 10^{-3}}$$

$$= \frac{1}{20}(e^{-4} - 1) = -0.049,$$

which is the $\frac{0.049}{0.05} = 0.98\%$ of the overall initial energy.