ECE 232 - Circuits and Systems II
 Test 2

Please provide clear and complete answers. Don't forget to specify the units of measure!

Figure 1:
Consider the circuit in the figure and assume at first that the initial energy is zero.

1. (1 point) Evaluate the impedance $Z(s)$ seen at the terminals A and B by the series of source and 1Ω resistor.
2. (1 point) Calculate the Laplace transform $V(s)$ of the voltage $v(t)$.
3. (1 point) Calculate the poles and zeros of $V(s)$ and indicate which poles are steady-state and which poles are transient.
4. (1 point) Identify the transfer function between the voltage source and $V(s)$.
5. (2 points) Calculate $v(t)$.
6. (2 points) Calculate the Laplace transform $I(s)$ of the current $i(t)$. Evaluate the steady-state value of $i(t)$ using partial fraction expansion.
7. (2 points) Assume now that the initial current in the inductor is $1 A$. Evaluate the Laplace transform $V(s)$.

Solution:

1. We have

$$
Z(s)=\frac{2}{s}\left\|\frac{2}{s}\right\| 0.25 \| s=\frac{1}{4+\frac{1}{s}+s}=\frac{s}{s^{2}+4 s+1} .
$$

2. By the voltage division rule, we can write

$$
\begin{aligned}
V(s) & =\frac{2}{s} \frac{Z(s)}{1+Z(s)} \\
& =\frac{2}{s^{2}+4 s+1+s} \\
& =\frac{2}{s^{2}+5 s+1} .
\end{aligned}
$$

3. No zeros. Poles: $s_{1}=-2.5+\sqrt{(2.5)^{2}-1}=-0.2087, s_{2}=-2.5-\sqrt{(2.5)^{2}-1}=-4.7913$. All poles are transient.
4. We have

$$
H(s)=\frac{Z(s)}{1+Z(s)}=\frac{s}{s^{2}+5 s+1}
$$

5. Using partial fraction expansion,

$$
\begin{aligned}
V(s) & =\frac{2}{s^{2}+5 s+1} \\
& =\frac{2}{(s+0.2087)(s+4.7913)} \\
& =\frac{K_{1}}{s+0.2087}+\frac{K_{2}}{s+4.7913}
\end{aligned}
$$

with

$$
\begin{aligned}
& K_{1}=\frac{2}{-0.2087+4.7913}=0.4364 \\
& K_{2}=\frac{2}{-4.7913+0.2087}=-0.4364
\end{aligned}
$$

It follows that

$$
v(t)=0.4364\left(e^{-0.2087 t}-e^{-4.7913 t}\right), t \geq 0
$$

6. We have

$$
\begin{aligned}
I(s) & =\frac{V(s)}{s} \\
& =\frac{2}{s\left(s^{2}+5 s+1\right)}
\end{aligned}
$$

The steady-state pole is $\mathrm{s}=0$ and thus the steady-state value of $i(t)$ is obtained as

$$
i(\infty)=\left.\frac{2 s}{s\left(s^{2}+5 s+1\right)}\right|_{s=0}=2
$$

7. Using the parallel representation of an inductor in the frequency domain, along with the superposition principle, we get

$$
\begin{aligned}
V(s) & =\frac{2}{s} \frac{Z(s)}{1+Z(s)}-\frac{1}{s}(Z(s) \| 1) \\
& =\frac{2}{s} \frac{Z(s)}{1+Z(s)}-\frac{1}{s} \frac{Z(s)}{1+Z(s)} \\
& =\frac{1}{s} \frac{Z(s)}{1+Z(s)} \\
& =\frac{1}{s^{2}+5 s+1}
\end{aligned}
$$

