ECE 232-Circuits and Systems II
 Test 2, Fall 2011

Consider the circuit in the figure. We have the two sources $i_{s_{1}}(t)=3 u(t)[\mathrm{A}]$ and $i_{s_{2}}(t)=$ $2 \cos (t) u(t)[\mathrm{A}]$. At time $t=0$, no energy is stored in the capacitor and in the inductor.

Figure 1:
a. Find the Laplace transform $V_{a}(s)$ of $v_{a}(t)$, for $t \geq 0$, and identify the transfer functions from the two sources $I_{s_{1}}(s)$ and $I_{s_{2}}(s)$ to $V_{a}(s)$.

Sol.: We use the superposition principle. Note that $I_{s_{1}}(s)=3 / s$ and $I_{s_{2}}(s)=2 s /\left(s^{2}+1\right)$. When considering source $I_{s_{1}}(s)$, we set $I_{s_{2}}(s)=0$, and thus we get $V_{a}(s)=3 / s$. Instead, when considering source $I_{s 2}(s)$, we set $I_{s 1}(s)=0$, and thus we get $V_{a}(s)=2 s /\left(s^{2}+1\right)$. Overall, we obtain

$$
V_{a}(s)=\frac{3}{s}+\frac{2 s}{s^{2}+1},
$$

and the two transfer functions are both simply $H(s)=1$.
b. Find poles and zeros of $V_{a}(s)$. Which poles are steady-state and which poles are transient? Finally, calculate $v_{a}(t)$ for $t \geq 0$.

Sol.: We obtain

$$
V_{a}(s)=\frac{3\left(s^{2}+1\right)+2 s^{2}}{s\left(s^{2}+1\right)}=\frac{5 s^{2}+3}{s\left(s^{2}+1\right)}
$$

so we have poles $s= \pm j$ (steady state), $s=0$ (steady state) and we have zeros $s= \pm j \sqrt{3 / 5}$. Converting in time domain, we get

$$
v_{a}(t)=(3+2 \cos t) u(t) .
$$

c. Assume $i_{s 2}(t)=0$ for simplicity (but we still have the other source, namely $\left.i_{s_{1}}(t)=3 u(t)\right)$. Find the Laplace transform $V_{b}(s)$ of $v_{b}(t)$, for $t \geq 0$, and identify the transfer functions from the source $I_{s_{1}}(s)$ to $V_{b}(s)$.

Sol.: Using the current division rule, we get

$$
\begin{aligned}
V_{b}(s) & =2 \cdot \frac{3}{s} \cdot \frac{s}{s+2+\frac{1}{2 s}} \\
& =\frac{3}{s} \cdot \frac{2 s^{2}}{s^{2}+2 s+1 / 2}
\end{aligned}
$$

so that the transfer function from the source $I_{s_{1}}(s)$ to $V_{b}(s)$ is given by $H(s)=\frac{2 s^{2}}{s^{2}+2 s+1 / 2}$.
d. Find poles and zeros of $V_{b}(s)$. Which poles are steady-state and which poles are transient? Finally, calculate $v_{b}(t)$ for $t \geq 0$.

Sol.: We have

$$
V_{b}(s)=\frac{6 s}{s^{2}+2 s+1 / 2},
$$

and hence the poles are $s=-1+1 / \sqrt{2}=-0.29$ and $s=-1-1 / \sqrt{2}=-1.71$, both transient, and the zero is $s=0$.
To find $v_{b}(t)$ we use partial fraction expansion and write

$$
\begin{aligned}
V_{b}(s) & =\frac{6 s}{s^{2}+2 s+1 / 2} \\
& =\frac{6 s}{(s+1-1 / \sqrt{2})(s+1+1 / \sqrt{2})} \\
& =\frac{K_{1}}{s+1-1 / \sqrt{2}}+\frac{K_{2}}{s+1+1 / \sqrt{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
K_{1} & =\left.\frac{6 s}{s+1+1 / \sqrt{2}}\right|_{s=-1+1 / \sqrt{2}}=\frac{6(-1+1 / \sqrt{2})}{2 / \sqrt{2}} \\
& =-1.24
\end{aligned}
$$

and

$$
\begin{aligned}
K_{2} & =\left.\frac{6 s}{s+1-1 / \sqrt{2}}\right|_{s=-1-1 / \sqrt{2}}=\frac{6(-1-1 / \sqrt{2})}{-2 / \sqrt{2}} \\
& =7.24
\end{aligned}
$$

It follows that

$$
v_{b}(t)=-1.24 e^{-(-1+1 / \sqrt{2}) t}+7.24 e^{-(-1-1 / \sqrt{2}) t}, t \geq 0
$$

