## ECE 232 - Circuits and Systems II Test 2, Fall 2011

Consider the circuit in the figure. We have the two sources  $i_{s_1}(t) = 3u(t)$  [A] and  $i_{s_2}(t) = 2\cos(t)u(t)$  [A]. At time t = 0, no energy is stored in the capacitor and in the inductor.



Figure 1:

a. Find the Laplace transform  $V_a(s)$  of  $v_a(t)$ , for  $t \ge 0$ , and identify the transfer functions from the two sources  $I_{s_1}(s)$  and  $I_{s_2}(s)$  to  $V_a(s)$ .

Sol.: We use the superposition principle. Note that  $I_{s_1}(s) = 3/s$  and  $I_{s_2}(s) = 2s/(s^2 + 1)$ . When considering source  $I_{s_1}(s)$ , we set  $I_{s_2}(s) = 0$ , and thus we get  $V_a(s) = 3/s$ . Instead, when considering source  $I_{s_2}(s)$ , we set  $I_{s_1}(s) = 0$ , and thus we get  $V_a(s) = 2s/(s^2 + 1)$ . Overall, we obtain

$$V_a(s) = \frac{3}{s} + \frac{2s}{s^2 + 1},$$

and the two transfer functions are both simply H(s) = 1.

b. Find poles and zeros of  $V_a(s)$ . Which poles are steady-state and which poles are transient? Finally, calculate  $v_a(t)$  for  $t \ge 0$ .

Sol.: We obtain

$$V_a(s) = \frac{3(s^2+1)+2s^2}{s(s^2+1)} = \frac{5s^2+3}{s(s^2+1)},$$

so we have poles  $s = \pm j$  (steady state), s = 0 (steady state) and we have zeros  $s = \pm j\sqrt{3/5}$ . Converting in time domain, we get

$$v_a(t) = (3 + 2\cos t)u(t).$$

c. Assume  $i_{s2}(t) = 0$  for simplicity (but we still have the other source, namely  $i_{s_1}(t) = 3u(t)$ ). Find the Laplace transform  $V_b(s)$  of  $v_b(t)$ , for  $t \ge 0$ , and identify the transfer functions from the source  $I_{s_1}(s)$  to  $V_b(s)$ . Sol.: Using the current division rule, we get

$$V_b(s) = 2 \cdot \frac{3}{s} \cdot \frac{s}{s+2+\frac{1}{2s}} \\ = \frac{3}{s} \cdot \frac{2s^2}{s^2+2s+1/2},$$

so that the transfer function from the source  $I_{s_1}(s)$  to  $V_b(s)$  is given by  $H(s) = \frac{2s^2}{s^2+2s+1/2}$ .

d. Find poles and zeros of  $V_b(s)$ . Which poles are steady-state and which poles are transient? Finally, calculate  $v_b(t)$  for  $t \ge 0$ .

Sol.: We have

$$V_b(s) = \frac{6s}{s^2 + 2s + 1/2},$$

and hence the poles are  $s = -1 + 1/\sqrt{2} = -0.29$  and  $s = -1 - 1/\sqrt{2} = -1.71$ , both transient, and the zero is s = 0.

To find  $v_b(t)$  we use partial fraction expansion and write

$$V_b(s) = \frac{6s}{s^2 + 2s + 1/2}$$
  
=  $\frac{6s}{(s + 1 - 1/\sqrt{2})(s + 1 + 1/\sqrt{2})}$   
=  $\frac{K_1}{s + 1 - 1/\sqrt{2}} + \frac{K_2}{s + 1 + 1/\sqrt{2}},$ 

where

$$K_1 = \frac{6s}{s+1+1/\sqrt{2}}|_{s=-1+1/\sqrt{2}} = \frac{6(-1+1/\sqrt{2})}{2/\sqrt{2}}$$
  
= -1.24

and

$$K_2 = \frac{6s}{s+1-1/\sqrt{2}}|_{s=-1-1/\sqrt{2}} = \frac{6(-1-1/\sqrt{2})}{-2/\sqrt{2}}$$
  
= 7.24.

It follows that

$$v_b(t) = -1.24e^{-(-1+1/\sqrt{2})t} + 7.24e^{-(-1-1/\sqrt{2})t}, \ t \ge 0.$$