ECE 232-Circuits and Systems II
 Test 3

The frequency response of a circuit is given by

$$
H(j \omega)=\frac{0.5}{j \omega+1}
$$

a. Write and sketch the amplitude response. What type of filter is it? What is the maximum value $H_{\max }$ of $|H(j \omega)|$? What is the $3 d B$ cut-off frequency?
b. If the input is $x(t)=\delta(t)$, find the output.
c. If the input is $x(t)=u(t)-u(t-1)$ (i.e., a rectangle of unit ampliture and duration 1 s), find the output using the convolution integral.
d. If the input is $x(t)=3 \cos (2 \pi t)$, find the output in steady-state.

Sol.:
a. The amplitude response is

$$
|H(j \omega)|=\frac{0.5}{\sqrt{1+\omega^{2}}}
$$

The maximum value of $|H(j \omega)|$ is obtained for $\omega=0$ and is given by $H_{\max }=0.5$. It is a low-pass filter with cut-off frequency ω_{c} given by

$$
\left|H\left(j \omega_{c}\right)\right|=\frac{0.5}{\sqrt{1+\omega_{c}^{2}}}=\frac{H_{\max }}{\sqrt{2}} \rightarrow \omega_{c}=1 \mathrm{rad} / \mathrm{s}
$$

b. The impulse response is

$$
h(t)=\mathcal{L}^{-1}\left(\frac{0.5}{s+1}\right)=0.5 e^{-t} u(t) .
$$

c. We have for $0 \leq t \leq 1$

$$
y(t)=0.5 \int_{0}^{t} e^{-\tau} d \tau=0.5\left(1-e^{-t}\right)
$$

and for $t \geq 1$

$$
\begin{aligned}
y(t) & =0.5 \int_{t-1}^{t} e^{-\tau} d \tau \\
& =0.5 e^{-t}(e-1)
\end{aligned}
$$

d. We have

$$
H(j 2 \pi)=\frac{0.5}{j 2 \pi+1}=0.0786 \angle-80.95^{\circ} .
$$

so that the output in steady-state is given by

$$
y(t)=0.2358 \cos \left(2 \pi t-80.95^{\circ}\right) .
$$

