ECE 232 - Circuits and Systems II

Test 3

Please provide clear and complete answers. Don't forget to specify the units of measure! Consider the circuit in the figure below.

1. (2 points) Calculate the transfer function between $i_{g}(t)$ and $i(t)$ and the corresponding impulse response.
2. (2 points) Assume that the input $i_{g}(t)$ is a rectangle of height $1 / 2$ and duration $1 / 4$ seconds. Calculate the current $i(t)$ for all $0 \leq t \leq 1 / 4$ using the convolution integral.
3. (2 points) Continue the point above by calculating $i(t)$ for all $t \geq 1 / 4$.
4. (2 point) Plot the resulting $i(t)$ for all $t \geq 0$.
5. (2 points) If the input is $i_{g}(t)=(2+2 \cos (0.5 t)) u(t) \mathrm{A}$, what is the output $i(t)$ in steady state?

Sol.: 1. By the current division rule, we get

$$
H(s)=\frac{1 / s}{2+1 / s}=\frac{1}{2 s+1}=\frac{1 / 2}{s+1 / 2} .
$$

The impulse response is then

$$
h(t)=\frac{1}{2} e^{-\frac{t}{2}} u(t)
$$

2. For $0 \leq t \leq 1 / 4$, we have

$$
\begin{aligned}
i(t) & =i_{g}(t) * h(t) \\
& =\int_{0}^{t} \frac{1}{2} \frac{1}{2} e^{-\frac{\tau}{2}} d \tau \\
& =\left.\frac{1}{4}(-2) e^{-\frac{\tau}{2}}\right|_{0} ^{t} \\
& =-\frac{1}{2}\left(e^{-t / 2}-1\right) \\
& =\frac{1}{2}-\frac{1}{2} e^{-t / 2} .
\end{aligned}
$$

3. For $t \geq 1 / 4$, we have

$$
\begin{aligned}
i(t) & =i_{g}(t) * h(t) \\
& =\int_{t-1 / 4}^{t} \frac{1}{2} \frac{1}{2} e^{-\frac{\tau}{2}} d \tau \\
& =\left.\frac{1}{4}(-2) e^{-\frac{\tau}{2}}\right|_{t-1 / 4} ^{t} \\
& =\frac{1}{2} e^{-(t-1 / 4) / 2}-\frac{1}{2} e^{-t / 2} \\
& =\frac{1}{2} e^{-t / 2}\left(e^{1 / 8}-1\right) .
\end{aligned}
$$

5. We have

$$
H(0)=1
$$

and

$$
H(j 0.5)=\frac{1}{\sqrt{2}} e^{-j \pi / 4}
$$

and so, in the steady-state regime, we can write

$$
i(t)=\left(2+\sqrt{2} \cos \left(0.5 t-\frac{\pi}{4}\right)\right) u(t) .
$$

