1. The edge of a unit cell in a cubic crystal is $a=2.62 \AA$. Find the Bragg angle corresponding to reflection from the planes (100), (110), (111), (200) and (211), given the wavelength of the monochromatic x-ray beam is $1.54 \AA$.
2. The Bragg reflection angle from the (110) planes in bcc iron is 22° for x -ray beam with $\lambda=1.54 \AA$. Calculate the edge of a cubic unit cell a.
3. Show that the volume of the first Brillouin zone is $8 \pi^{3} / V_{\mathrm{c}}$, where V_{c} is the volume of a crystal primitive cell. (Hint: remember that Wigner-Seitz cell has the same volume as parallelepiped formed by three basis vectors of a primitive cell)
4. For a hydrogen atom in its ground state, the electron density is

$$
n(r)=\frac{1}{\pi a_{0}{ }^{3}} e^{\frac{-2 r}{a_{0}}}
$$

where a_{0} is the Bohr radius ($0.53 \AA$). Show that the atomic scattering factor for hydrogen is $f_{a}=16 /\left(4+G^{2} a_{0}^{2}\right)^{2}$
5. a) Calculate the structure factor F_{hkl} for fcc lattice. Find the condition for h, k, l numbers for which the factor is non-zero.
b) Calculate the structure factor for diamond lattice.

