

	Ir	nstructor:	
Andrei Sirenko Professor at th	e Dept. of Physics	s, NJIT	
http://web.nji [.]	r.edu/~sirenko		
468 Tiernan			
Office hours:	Before the class 973-59	ses or by appointment 16-5342	
Class Schedule	:		
Monday	1 pm - 4 pm	FMH 407	
Lecture 1		Andrei Sirenko, NJIT	2

Plan for today:

- Introduction to the Course
- Crystals

Lecture 1

Course Elements:
Textbooks: M. A. Omar, "Elementary Solid State Physics", Addison-Wesley, 1993.
 Charles Kittel, Introduction to Solid State Physics, 8th Edition, Wiley, 2004. Supplemental texts: H. Ibach, H. Lüth, "Solid-State Physics. <u>An Introduction to Principles of Materials Science</u>", Springer, 2003. J. S. Blakemore, "<u>Solid State Physics</u>", Third Edition, Cambridge University Press, 1985 P. Yu and M. Cardona, "Fundamentals of semiconductors" N. W. Ashcroft and N. D. Mermin, "Solid State Physics"
Lecture Slides
Demonstrations in the Experimental Lab at NJIT - Raman Scattering in Diamond - High-Resolution X-ray Diffraction in Silicon wafer - Transmission in InP-based multilayer device structure - Micro-beam Photoluminescence in InGaAsP-based waveguide device structure
Grade Components: - Homework: 10 % - Research project: 10 % - Two in-class exams: 15% each; - Final exam: 50%

	Outline of	the course:	
•	I. Crystal structure, symmetry and types of chemical bonds. (Chapt	ver 1)	
	The crystal lattice		
	Point symmetry		
	The 32 crystal classes		
•	Types of bonding (covalent, ionic, metallic bonding; hydrogen and van	der Waals).	
	II. Diffraction from periodic structures (Chapter 2)		
•	Reciprocal lattice; Brillouin zones		
•	Laue condition and Bragg law		
•	Structure factor; defects		
•	Methods of structure analysis		
•	HRXRD. Experimental demonstration in the Physics Lab using Bruker D8 Disc	over XRD	
•	III. Lattice vibrations and thermal properties (Chapter 3)		
•	Elastic properties of crystals; elastic waves		
•	Models of lattice vibrations		
•	Phonons		
•	Theories of phonon specific heat; thermal conduction.		
•	Anharmonicity; thermal expansion		
•	Raman Scattering by phonons. Experimental demonstration in the Physics Lab	ising Ar-laser/SPEX 500M, CCD -based Raman Scattering setup	
•	IV. Electrons in metals (Chapters 4–5)		
•	Free electron theory of metals		
•	Fermi Statistics		
•	Band theory of solids		
•	V. Semiconductors (Chapters 6-7)		
•	Band structure.		
•	Electron statistics; carrier concentration and transport; conductivity; mobility	I	
•	Impurities and defects		
•	Magnetic field effects: cyclotron resonance and Hall effect		
•	Optical properties; absorption, photoconductivity and luminescence		
·	Basic semiconductor devices		
•	Photoluminescence. Experimental demonstration in the Physics Lab using Nd: 1	AG laser/SPEX -based Photoluminescence setup	
•	VI. Dielectric properties of solids (Chapters 8)		
•	Dielectric constant and polarizability (susceptibility)		
•	Dipolar polarizability, ionic and electronic polarizability		
•	Piezoelectricity; pyro- and ferroelectricity		
•	Light propagation in solids		
•	VII. Magnetism (Chapters 9)		
•	Magnetic susceptibility		
•	Classification of materials; diamagnetism, paramagnetism		
•	Ferromagnetism and antiferromagnetism		
•	Magnetic resonance		
•	Multiferroic Materials		
•	VIII. Superconductivity (Chapter 10)		
	Lecture 1 Andrei	Sirenko, NJIT	8
			-

<u>Homework</u>

- Assignments (~6 in total) will be due weekly, usually on Mondays. Assignments are due at the beginning of class.
- Homework problems, lectures, and text readings will form the basis of the exam problems.

Project

Students will perform a research project on a selected topic of contemporary solid state physics (of their choice) by reviewing scientific journal articles focusing on the effect chosen. A formal oral presentation (~10 slides) will be required.

Lecture 1

Andrei Sirenko, NJIT

11

Reciprocal lattice

Constricting the reciprocal lattice from the direct lattice:

Let $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_3}$ - primitive vectors of the direct lattice; $\mathbf{T} = n_1 \mathbf{a_1} + n_2 \mathbf{a_2} + n_3 \mathbf{a_3}$ Then reciprocal lattice can be generated using the primitive vectors

$$\mathbf{b}_1 = \frac{2\pi}{V} \mathbf{a}_2 \times \mathbf{a}_3, \ \mathbf{b}_2 = \frac{2\pi}{V} \mathbf{a}_3 \times \mathbf{a}_1, \ \mathbf{b}_3 = \frac{2\pi}{V} \mathbf{a}_1 \times \mathbf{a}_2$$

where $V = \mathbf{a_1} \cdot (\mathbf{a_2} \times \mathbf{a_3})$ is the volume of the unit cell

We have $\mathbf{b}_{i} \cdot \mathbf{a}_{i} = \delta_{ii}$

51

Lecture 1

Andrei Sirenko, NJIT

II. Covalent crystals
 Electron pair bond: usually one electron from each atom
 Electrons tend to be localized in part between the two atoms
 The spins of electrons in the bond are anti-parallel
 Gap between fully occupied and unoccupied states → dielectrics or semiconductors
Directionality of covalent bonds. Example: carbon
Hybridization. $2s^22p^2 \rightarrow 2s^2p_x^2p_y^2p_z$: sp^3 tetrahedral configuration
Also possible sp^2 : $2s2p_x2p_y$ – planar (graphite, fullerenes) remaining p_z : interlayer π -bonding
Covalent polar bond (many compound semiconductors) – intermediate case between non-polar and ionic bond. Described by effective ionic charge or fractional ionic character (between 0 and 1: 0 for Si or diamond, 0.94 for NaCl). Covalent bond is also strong, binding energies of several eV per atom Lecture 1 Andrei Sirenko, NJIT 60

III. Metals
 Most elements in periodic table
 High electrical and thermal conductivity
– High density
 Considerable mechanical strength, but plasticity
These properties can be explained considering the metallic type of bond
Example: alkali metals – single electron weakly bound to atom – easily delocalized.
In contrast to covalent bonding, electronic wave functions are very extended compared to interatomic distances. Why total energy is reduced ?
Partially occupied electronic bands – electrons can move freely
Group II metals – two <i>s</i> electrons – should be fully occupied but overlapped with empty <i>p</i> -states
Transition metals: <i>d</i> -electrons are more localized – form covalent-like bonds; s and <i>p</i> -electrons again form a common band
Metals crystallize in closely packed structures (hcp, fcc, bcc) Lecture 1 Andrei Sirenko, NJIT 61

IV. Van der Waals bonds
Inert gases: outer electronic shells are full – no ionic or covalent forces
Weak interatomic forces due to quantum fluctuations of charge \rightarrow arising dipole moments cause a weak attractive force
Can be described in the quantum-mechanical model of two linear oscillators (given in Kittel) \rightarrow results in R^6 dependence of potential
Binding energy in order of 0.1 eV
Crystal structures are fcc (electronic distribution is spherical, atoms pack as closely as possible)
Van der Waals forces are also responsible for bonding in organic molecular crystals. Molecules are weakly bound; often form low-symmetry crystals
They also exist in covalent or ionic crystals, but negligible
V. Hydrogen bonds
Formed between two strongly electronegative atoms (F, O, N) via H
Example: ice Lecture 1Binding energy is also ~0.1 eV Andrei Sirenko, NJIT62

	CsCl s	tructure
Crystal	a	
BeCu	2.70 Å	
AlNi	2.88	
CuZn	2.94	
CuPd	2.99	
AgMg	3.28	
LiHg	3.29	a
NH4Cl	3.87	
TlBr	3.97	Ļ
CsCl	4.11	Why are the a values smaller for th
TlI	4.20	CsCl structures than for the NaCl (general)?