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Phys 446: 
Solid State Physics / Optical 

Properties

Fall 2015
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Solid State Physics 
Lecture 2 

(Ch. 2.1-2.3, 2.6-2.7)

Last week: 

• Crystals, 

• Crystal Lattice, 

• Reciprocal Lattice

Today:

• Types of bonds in crystals

Diffraction from crystals 

• Importance of the reciprocal lattice concept
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(3) The Hexagonal Closed-packed (HCP) 

structure

• The HCP structure is made up of stacking spheres in a ABABAB… 
configuration

• The HCP structure has the primitive cell of the hexagonal lattice, with a basis of 
two identical atoms

• Atom positions: 000, 2/3 1/3 ½ (remember, the unit axes are not all 
perpendicular)

• The number of nearest-neighbours is 12

• The ideal ratio of c/a for 
this packing is (8/3)1/2 = 1.633

.

Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl

Rotated 
three times

Conventional HCP unit cell
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Crystal Lattice 

http://www.matter.org.uk/diffraction/geometry/reciprocal_lattice_exercises.htm
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Reciprocal Lattice 
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Some examples of reciprocal lattices

1. Reciprocal lattice to simple cubic lattice

a1 = ax,     a2 = ay,       a3 = az V = a1·(a2a3) = a3 

b1 = (2/a)x,     b2 = (2/a)y,       b3 = (2/a)z 

reciprocal lattice is also cubic with lattice constant 2/a

2. Reciprocal lattice to bcc lattice
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 zyb 
a

2
1
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a

2
3

got

but these are primitive 
vectors of fcc lattice

So, the reciprocal lattice to bcc is fcc.

Analogously, show that the reciprocal lattice to fcc is bcc
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Brillouin zones

Determine all the perpendicular 
bisecting planes in the reciprocal 
lattice

First Brillouin zone - the Wigner-
Seitz cell of the reciprocal lattice

Higher Brillouin zones:Second Brillouin zone:
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Brillouin zones of cubic lattices

First BZ of a BCC lattice First BZ of an FCC lattice
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Summary 

Reciprocal lattice is defined by primitive vectors: 

A reciprocal lattice vector has the form G = hb1 + kb2 + lb3

It is normal to (hkl) planes of direct lattice

First Brillouin zone is the Wigner-Seitz primitive cell of the 
reciprocal lattice

Simple cubic  cube;   bcc  Rhombic dodecahedron; 
fcc  truncated octahedron (figures on the previous slide)
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Indexing system for crystal 
planes

• Since crystal structures are 
obtained from diffraction 
experiments (in which 
particles diffract from 
planes of atoms), it is useful 
to develop a system for 
indexing lattice planes.

• We can use the lattice 
constants a1, a2, a3, but it 
turns out to be more useful 
to use what are called Miller 
Indices.

Index
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Rules for determining Miller Indices

• (1)  Find the intercepts on 
the axes in terms of the 
lattice constants a1, a2, a3.

• (2)  Take the reciprocals 
of these numbers and then 
reduce to three integers 
having the same ratio, 
usually the smallest of the 
three integers.  The result, 
listed as (hkl), is called the 
index of the plane.

An example:

Intercepts: a, ∞,∞
Reciprocals: a/a, a/∞, a/∞

= 1, 0, 0
Miller index for this plane : (1 0 0)
(note:  this is the normal vector for this plane)
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Examples of Miller Indices

Intercepts: a, a,∞
Reciprocals: a/a, a/a, a/∞

= 1, 1, 0
Miller index for this plane : (1 1 0)

Intercepts: a,a,a
Reciprocals: a/a, a/a, a/a

= 1, 1, 1
Miller index for this plane : (1 1 1)
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Examples of Miller Indices

Intercepts: 1/2a, a,∞
Reciprocals: 2a/a, a/a, a/∞

= 2, 1, 0
Miller index for this plane : (2 1 0)
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Notes on notation
• (hkl) might mean a single plane, or 

a set of planes
• If a plane cuts a negative axis, we 

have minus signs in the (hkl) (ie. 
(hkl))

• Planes are denoted with curly 
brackets (hkl)

• A set of faces are denoted {hkl}
• The direction of a crystal (for 

example, along x for a cubic crystal) 
is denoted with [uvw] (ie. The [100] 
direction)

• In cubic crystals, the direction [hkl] 
is perpendicular to the plane (hkl) 
having the same indices, but this 
isn’t necessarily true for other 
crystal systems

[100]
direction

{001} face

[001] direction
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Inter-atomic forces 

and 

types of bonds in solids.
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Interatomic forces

What holds a crystal together? 

Attractive electrostatic interaction 
between electrons and nuclei –
the force responsible for 
cohesion of solids

equilibrium 
position

R0

binding energy

Interatomic distance R
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F(R) < 0 for R > R0 :
attraction 

F(R) > 0 for R < R0 :
repulsion
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Types of bonding

I. Ionic crystals

Usually involve atoms of strongly different electro-negativities 
(Example: alkali halides).

nR

A
N

R

e
NRU 

0

2

4
)(




KCl: energy per molecule vs R
(from Kittel)

attractive
(Coulomb) repulsive

Ionic bond is strong 
(binding energy - few eV/pair)
 hardness, high melting T

electrons are strongly localized
 insulators in solid form

Typical crystal structures: NaCl, CsCl



10

Lecture 2 Andrei Sirenko, NJIT 19

II. Covalent crystals

– Electron pair bond: usually one electron from each atom

– Electrons tend to be localized in part between the two atoms

– The spins of electrons in the bond are anti-parallel 

– Gap between fully occupied and unoccupied states  dielectrics 
or semiconductors

Directionality of covalent bonds. Example: carbon 

Hybridization.   2s22p2  2s2px2py2pz :  sp3 tetrahedral configuration

Also possible sp2:  2s2px2py – planar (graphite, fullerenes)
remaining pz : interlayer -bonding

Covalent polar bond (many compound semiconductors) –
intermediate case between non-polar and ionic bond. Described by 
effective ionic charge or fractional ionic character (between 0 and 1: 
0 for Si or diamond, 0.94 for NaCl).  Covalent bond is also strong, 
binding energies of several eV per atom
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III. Metals

– Most elements in periodic table

– High electrical and thermal conductivity

– High density 

– Considerable mechanical strength, but plasticity

These properties can be explained considering the metallic type of bond

Example: alkali metals – single electron weakly bound to atom – easily 
delocalized. 

In contrast to covalent bonding, electronic wave functions are very extended 
compared to interatomic distances. Why total energy is reduced ? 

Partially occupied electronic bands – electrons can move freely 

Group II metals – two s electrons – should be fully occupied...
but overlapped with empty p-states

Transition metals: d-electrons are more localized – form covalent-like bonds; s
and p-electrons again form a common band 

Metals crystallize in closely packed structures (hcp, fcc, bcc)
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IV. Van der Waals bonds

Inert gases: outer electronic shells are full – no ionic or covalent forces

Weak interatomic forces due to quantum fluctuations of charge  arising 
dipole moments cause a weak attractive force

Can be described in the quantum-mechanical model of two linear oscillators 
(given in Kittel)  results in R-6 dependence of potential

Binding energy in order of 0.1 eV

Crystal structures are fcc (electronic distribution is spherical, atoms pack as 
closely as possible)

Van der Waals forces are also responsible for bonding in organic molecular 
crystals. Molecules are weakly bound; often form low-symmetry crystals 

They also exist in covalent or ionic crystals, but negligible 

V. Hydrogen bonds
Formed between two strongly electronegative atoms (F, O, N) via H 

Example: ice               Binding energy is also ~0.1 eV
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Summary 

Repulsive interaction between atoms is primarily due to 
electrostatic repulsion of overlapping charge distributions and 
Pauli principle

Several types of attractive forces: 

• Ionic crystals – electrostatic forces between "+" and "-" ions

• Covalent bond: overlap of charge distributions with 
antiparallel spin

• Metals: reduction of kinetic energy of electrons in free state 
compared to the localized state of a single atom

• Secondary forces (Van der Waals, hydrogen) become 
significant when the other bonds are impossible, e.g. in inert 
gases

Physical properties are closely related to the type of bonding
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DIFFRACTION
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Diffraction of waves by crystal lattice

• Most methods for determining the atomic structure of crystals are 
based on scattering of particles/radiation. 

• X-rays is one of the types of the radiation which can be used 

• Other types include electrons and neutrons 

• The wavelength of the radiation should be comparable to a typical 
interatomic distance of a few Å    (1 Å =10-10 m)

E

hchc
hE  




(Å) = 12398/E(eV) 
few keV is suitable energy
for  = 1 Å

• X-rays are scattered mostly by electronic shells of atoms in a solid.
Nuclei are too heavy to respond. 

• Reflectivity of x-rays ~10-3-10-5  deep penetration into the solid 
 x-rays serve as a bulk probe
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The Bragg Law

Conditions for a sharp peak in the 
intensity of the scattered radiation:

1) the x-rays should be specularly 
reflected  by the atoms in one plane 

2) the reflected rays from the 
successive planes interfere constructively

The path difference between the two x-rays: 2d·sinθ

the Bragg formula:  2d·sinθ = mλ

The model used to get the Bragg law are greatly oversimplified 
(but it works!). 

– It says nothing about intensity and width of x-ray diffraction peaks 

– neglects differences in scattering from different atoms 

– assumes single atom in every lattice point 

– neglects distribution of charge around atoms
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The Bragg Law and Diffraction grating

Compare Bragg Law 

2d·sinθ = mλ

X-ray Diffraction 

http://www.matter.org.uk/diffraction/geometry/superposition_of_waves_exercises.htm
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Meaning of d  for 2D

d

2d·sinθ = mλ
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Meaning of d  for 3D
http://www.desy.de/~luebbert/CrystalCalc_Cubic.html

Intercepts: a,a,a
Reciprocals: a/a, a/a, a/a

= 1, 1, 1
Miller index for this plane : (1 1 1)

2 2 2

2 2 2

hkl

n
d

h k l
a b c



 

d 111

111 3.13 A for Si with 5.431 A
3

n a
d a


  

2d·sinθ = mλ
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X-rays are EM waves
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The most important information arises when 
the wavelength of the radiation is similar to, 
or smaller than, the size of the spacing between 
the objects being studied.
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X-rays and X-ray tube

Bragg Law 2d·sinθ = mλ

for m=1   2d > λ

Electronic 
transitions

X-ray tube
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X-rays  and Synchrotrons

Bragg Law 2d·sinθ = mλ

Synchrotron radiation
Natural  Synchrotron Radiation

Accelerating electron 
emits  light

Stars and 

Galaxies
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•Synchrotron Radiation from a storage ring 
is the most bright manmade source of white light
•Useful for materials studies from Far Infrared and UV to X-ray  

Synchrotron 
Radiation 
produced by 
relativistic 
electrons in 
accelerators
(since 1947)
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Diffraction condition and reciprocal lattice

Von Laue approach: 

– crystal is composed of identical 
atoms placed at the lattice sites T 

– each atom can reradiate the incident 
radiation in all directions. 

– Sharp peaks are observed only in the 
directions for which the x-rays 
scattered from all lattice points 
interfere constructively.

Consider two scatterers separated by a lattice vector T. 
Incident x-rays: wavelength λ, wavevector k; |k| = k = 2/;  
Assume elastic scattering: scattered x-rays have same energy (same λ) 
wavevector k' has the same magnitude |k'| = k = 2/

Condition of constructive interference:                             

Define    k = k' - k - scattering wave vector   

Then   k = G , where G is defined as such a vector for which   G·T = 2m

k

k
k 


k'

k'
'k 


  m2 Tkk'

Lecture 2 Andrei Sirenko, NJIT 36

We obtained the diffraction (Laue) condition: k = G where  G·T = 2m

Vectors G which satisfy this relation form a reciprocal lattice

A reciprocal lattice is defined with reference to a particular Bravais lattice, 
which is determined by a set of lattice vectors T. 

Constricting the reciprocal lattice from the direct lattice:

Let a1, a2, a3 - primitive vectors of the direct lattice;  T = n1a1 + n2a2 + n3a3

Then reciprocal lattice can be generated using the primitive vectors

where V = a1·(a2a3) is the volume of the unit cell

Then vector G = m1b1 + m2b2 + m3b3 We have bi·aj = δij

Therefore, G·T = (m1b1 + m2b2 + m3b3)·(n1a1 + n2a2 + n3a3) =
2(m1n1+ m2n2+ m3n3) = 2m

The set of reciprocal lattice vectors determines the possible scattering wave 
vectors for diffraction
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We got  k = k' – k = G  |k'|2 = |k|2 + |G|2 +2k·G  G2 +2k·G = 0

2k·G = G2 – another expression for diffraction condition

Now, show that the reciprocal lattice vector G = hb1 + kb2 + lb3 is 

orthogonal to the plane represented by Miller indices (hkl)

plane (hkl) intercepts axes at points 
x, y, and z given in units a1, a2 and a3

By the definition of the Miller indices:

define plane by two non-collinear vectors u and v lying within this plane:

prove that G is orthogonal to u and v: 
analogously show
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Now, prove that the distance between two adjacent parallel planes of 
the direct lattice is d = 2π/G.

The interplanar distance is given by 

the projection of the one of the 

vectors xa1, ya2, za3, to the direction 

normal to the (hkl) plane, which is 

the direction of the unit vector G/G




k k'

k

The reciprocal vector G(hkl) is associated with the crystal planes (hkl) and 

is normal to these planes. The separation between these planes is 2π/G

2k·G = G2  2|k|Gsin = G2

 2·2sin / = 2/d  2dsin = 

2dsin = m - get Bragg law
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Ewald Construction for Diffraction 

Condition and  reciprocal space 
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Reciprocal Space: Accessible Area for Diffraction 
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Summary 

Various statements of the Bragg condition: 

2d·sinθ = mλ  ; k = G ; 2k·G = G2

Reciprocal lattice is defined by primitive vectors: 

A reciprocal lattice vector has the form G = hb1 + kb2 + lb3

It is normal to (hkl) planes of direct lattice

Only waves whose wave vector drawn from the origin 
terminates on a surface of the Brillouin zone can be diffracted 
by the crystal First BZ of fcc latticeFirst BZ of bcc lattice
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Summary 
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Rotating crystal method –

for single crystals, epitaxial films 

-2,  rocking curve,  - scan

Powder diffraction

Laue method – white x-ray beam used most often used for mounting 
single crystals in a precisely known orientation

Experimental XRD techniques
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Applications of X-ray Diffraction  for crystal and 

thin-film analysis
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Applications of X-ray Diffraction  for hetero-structures 
(one or more crystalline films grown on a substrate) 
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X-ray Diffraction Setup 
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High Angular Resolution X-ray Diffraction Setup 

B11 Tiernan
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Example of High Angular Resolution X-ray Diffraction 
analysis of a SiGe film on Si substrate


