

Phys 446:
 Solid State Physics / Optical Properties

Fall 2015

Solid State Physics
Lecture 2
(Ch. 2.1-2.3, 2.6-2.7)
Last week:

- Crystals,
- Crystal Lattice,
- Reciprocal Lattice

Today:

- Types of bonds in crystals

Diffraction from crystals

- Importance of the reciprocal lattice concept

(3) The Hexagonal Closed-packed (HCP) structure

Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, Tl

- The HCP structure is made up of stacking spheres in a $A B A B A B . .$. configuration
- The HCP structure has the primitive cell of the hexagonal lattice, with a basis of two identical atoms
- Atom positions: $000,2 / 31 / 31 / 2$ (remember, the unit axes are not all perpendicular)
- The number of nearest-neighbours is 12
- The ideal ratio of c / a for this packing is $(8 / 3)^{1 / 2}=1.633$

Rotated three times

Crystal Lattice

http://www.matter.org.uk/diffraction/geometry/reciprocal_lattice_exercises.htm

Reciprocal Lattice

crystal lattice point:

$$
\begin{aligned}
& \vec{R}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3} \\
& \vec{G}=h_{1} \vec{b}_{1}+h_{2} \vec{b}_{2}+h_{3} \vec{b}_{3}
\end{aligned}
$$

reciprocal lattice point:
 primitive translations of the reciprocal lattice:
$\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \vec{a}_{3}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} \quad \vec{b}_{2}=2 \pi \frac{\vec{a}_{3} \times \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}} \quad \vec{b}_{3}=2 \pi \frac{\vec{a}_{1} \times \vec{a}_{2}}{\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}}$
properties: $\quad \vec{a}_{i} \cdot \vec{b}_{k}=2 \pi \delta_{i k} \quad$ or $\quad \vec{R} \cdot \vec{G}=m 2 \pi$
fundamental property of a crystal lattice: translation invariance of electron- / scattering-density:

$$
\rho(\vec{r})=\rho(\vec{r}+\vec{R})
$$

$$
\rho(\vec{r})=\sum_{\vec{G}} \rho_{\vec{G}} e^{i \vec{G} \cdot \vec{r}} \quad \text { with } \quad \rho(\vec{r}+\vec{R})=\sum_{G} \rho_{\vec{G}} e^{i(\vec{G} \cdot \vec{r}+\vec{G} \cdot \vec{R})}=\sum_{G} \rho_{\vec{G}} e^{i \vec{G} \cdot \vec{r}}=\rho(\vec{r})
$$

Some examples of reciprocal lattices

1. Reciprocal lattice to simple cubic lattice

$\mathbf{a}_{1}=a \mathbf{x}, \quad \mathbf{a}_{2}=a \mathbf{y}, \quad \mathbf{a}_{3}=a \mathbf{z} \quad V=\mathbf{a}_{\mathbf{1}} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)=a^{3} \quad \Rightarrow$
$\mathbf{b}_{1}=(2 \pi / a) \mathbf{x}, \quad \mathbf{b}_{2}=(2 \pi / a) \mathbf{y}$,
$\mathbf{b}_{3}=(2 \pi / a) \mathbf{z} \quad \Rightarrow$
reciprocal lattice is also cubic with lattice constant $2 \pi / a$
2. Reciprocal lattice to bcc lattice

$$
\begin{aligned}
& \mathbf{a}_{1}=\frac{1}{2} a(-\mathbf{x}+\mathbf{y}+\mathbf{z}) \quad \mathbf{a}_{2}=\frac{1}{2} a(\mathbf{x}-\mathbf{y}+\mathbf{z}) \\
& \mathbf{a}_{3}=\frac{1}{2} a(\mathbf{x}+\mathbf{y}-\mathbf{z}) \quad V=\left|\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3}\right|=\frac{1}{2} a^{3} \\
& \Rightarrow \mathbf{b}_{1}=\frac{2 \pi}{a}(\mathbf{y}+\mathbf{z}) \quad \mathbf{b}_{2}=\frac{2 \pi}{a}(\mathbf{x}+\mathbf{z}) \quad \mathbf{b}_{3}=\frac{2 \pi}{a}(\mathbf{x}+\mathbf{y}) \\
& \text { Lecture 2 }
\end{aligned}
$$

got
$\mathbf{b}_{1}=\frac{2 \pi}{a}(\mathbf{y}+\mathbf{z})$
$\mathbf{b}_{2}=\frac{2 \pi}{a}(\mathbf{x}+\mathbf{z})$
$\mathbf{b}_{3}=\frac{2 \pi}{a}(\mathbf{x}+\mathbf{y})$
but these are primitive vectors of fcc lattice

So, the reciprocal lattice to bcc is fcc.
Analogously, show that the reciprocal lattice to fcc is bcc

Brillouin zones of cubic lattices

First BZ of a BCC lattice

Summary

*Reciprocal lattice is defined by primitive vectors:

$$
\mathbf{b}_{1}=\frac{2 \pi}{V} \mathbf{a}_{2} \times \mathbf{a}_{3}, \quad \mathbf{b}_{2}=\frac{2 \pi}{V} \mathbf{a}_{3} \times \mathbf{a}_{1}, \quad \mathbf{b}_{3}=\frac{2 \pi}{V} \mathbf{a}_{1} \times \mathbf{a}_{2}
$$

*A reciprocal lattice vector has the form $\mathbf{G}=h \mathbf{b}_{\mathbf{1}}+k \mathbf{b}_{\mathbf{2}}+l \mathbf{b}_{\mathbf{3}}$ It is normal to (hkl) planes of direct lattice

* First Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal lattice
* Simple cubic \rightarrow cube; bcc \rightarrow Rhombic dodecahedron; $\mathrm{fcc} \rightarrow$ truncated octahedron (figures on the previous slide)

Indexing system for crystal planes

- Since crystal structures are obtained from diffraction experiments (in which particles diffract from planes of atoms), it is useful to develop a system for indexing lattice planes.
- We can use the lattice constants a_{1}, a_{2}, a_{3}, but it turns out to be more useful to use what are called Miller Indices.

Rules for determining Miller Indices

- (1) Find the intercepts on the axes in terms of the lattice constants a_{1}, a_{2}, a_{3}.
- (2) Take the reciprocals of these numbers and then reduce to three integers having the same ratio,
 usually the smallest of the three integers. The result, listed as ($h k l$), is called the index of the plane.
ercepts: a, ∞, ∞
Reciprocals: $a / a, a / \infty, a / \infty$
$=1,0,0$
Miller index for this plane : (100)
(note: this is the normal vector for this plane)

Examples of Miller Indices

Reciprocals: a/a, a/a, a/ ∞ $=1,1,0$

Reciprocals: a/a, a/a, a/a
$=1,1,1$
Miller index for this plane : (110)
Lecture 2
Andrei Sirenko, NJIT
13

Examples of Miller Indices

Intercepts: 1/2a, a, ∞
Reciprocals: 2a/a, a/a, a/ ∞ $=2,1,0$
Miller index for this plane : (210)

Notes on notation

- ($h k l$) might mean a single plane, or a set of planes
- If a plane cuts a negative axis, we have minus signs in the ($h k l$) (ie. ($h k l$)
- Planes are denoted with curly brackets ($h k l$)
- A set of faces are denoted $\{h k l\}$
- The direction of a crystal (for example, along x for a cubic crystal) is denoted with $[u v w]$ (ie. The [100] direction)
- In cubic crystals, the direction $[\mathrm{hkl}]$ is perpendicular to the plane $(h \mathrm{kl})$ having the same indices, but this isn't necessarily true for other crystal systems

Inter-atomic forces

 and
types of bonds in solids.

Interatomic forces

What holds a crystal together?
Attractive electrostatic interaction between electrons and nuclei the force responsible for cohesion of solids

Interatomic distance R

Force:
$F(R)=-\frac{\partial V(R)}{\partial R}$
$F(R)<0$ for $R>R_{0}$: attraction $F(R)>0$ for $R<R_{0}$: repulsion

$$
17
$$

Types of bonding

I. Ionic crystals

Usually involve atoms of strongly different electro-negativities (Example: alkali halides).

$$
U(R)=-N \frac{\alpha e^{2}}{4 \pi \varepsilon_{0} R}+N \frac{A}{R^{n}}
$$

lonic bond is strong
(binding energy - few eV/pair)
\Rightarrow hardness, high melting T
electrons are strongly localized
\Rightarrow insulators in solid form
Typical crystal structures: $\mathrm{NaCl}, \mathrm{CsCl}$

II. Covalent crystals

- Electron pair bond: usually one electron from each atom
- Electrons tend to be localized in part between the two atoms
- The spins of electrons in the bond are anti-parallel
- Gap between fully occupied and unoccupied states \rightarrow dielectrics or semiconductors
Directionality of covalent bonds. Example: carbon
Hybridization. $2 s^{2} 2 p^{2} \rightarrow 2 s 2 p_{x} 2 p_{y} 2 p_{z}: s p^{3}$ tetrahedral configuration
Also possible $s p^{2}: 2 s 2 p_{x} 2 p_{y}-$ planar (graphite, fullerenes)
remaining p_{z} : interlayer π-bonding
Covalent polar bond (many compound semiconductors) intermediate case between non-polar and ionic bond. Described by effective ionic charge or fractional ionic character (between 0 and 1: 0 for Si or diamond, 0.94 for NaCl). Covalent bond is also strong, binding energies of several eV per atom

Lecture 2
Andrei Sirenko, NJIT
19

III. Metals

- Most elements in periodic table
- High electrical and thermal conductivity
- High density
- Considerable mechanical strength, but plasticity

These properties can be explained considering the metallic type of bond
Example: alkali metals - single electron weakly bound to atom - easily delocalized.

In contrast to covalent bonding, electronic wave functions are very extended compared to interatomic distances. Why total energy is reduced ?

Partially occupied electronic bands - electrons can move freely
Group II metals - two s electrons - should be fully occupied...
but overlapped with empty p-states
Transition metals: d-electrons are more localized - form covalent-like bonds; s and p-electrons again form a common band

Metals crystallize in closely packed structures (hcp, fcc, bcc)
Andrei Sirenko, NJIT

IV. Van der Waals bonds

Inert gases: outer electronic shells are full - no ionic or covalent forces
Weak interatomic forces due to quantum fluctuations of charge \rightarrow arising dipole moments cause a weak attractive force

Can be described in the quantum-mechanical model of two linear oscillators (given in Kittel) \rightarrow results in R^{-6} dependence of potential
Binding energy in order of 0.1 eV
Crystal structures are fcc (electronic distribution is spherical, atoms pack as closely as possible)

Van der Waals forces are also responsible for bonding in organic molecular crystals. Molecules are weakly bound; often form low-symmetry crystals

They also exist in covalent or ionic crystals, but negligible

V. Hydrogen bonds

Formed between two strongly electronegative atoms (F, O, N) via H
Example: ice Binding energy is also $\sim 0.1 \mathrm{eV}$
Lecture 2
Andrei Sirenko, NJIT
21

Summary

*Repulsive interaction between atoms is primarily due to electrostatic repulsion of overlapping charge distributions and Pauli principle
*Several types of attractive forces:

- lonic crystals - electrostatic forces between "+" and "-" ions
- Covalent bond: overlap of charge distributions with antiparallel spin
- Metals: reduction of kinetic energy of electrons in free state compared to the localized state of a single atom
- Secondary forces (Van der Waals, hydrogen) become significant when the other bonds are impossible, e.g. in inert gases
*Physical properties are closely related to the type of bonding

DIFFRACTION

Diffraction of waves by crystal lattice

- Most methods for determining the atomic structure of crystals are based on scattering of particles/radiation.
- X-rays is one of the types of the radiation which can be used
- Other types include electrons and neutrons
- The wavelength of the radiation should be comparable to a typical interatomic distance of a few $\AA \quad\left(1 \AA=10^{-10} \mathrm{~m}\right)$

$$
E=h v=\frac{h c}{\lambda} \Rightarrow \lambda=\frac{h c}{E} \quad \begin{aligned}
& \lambda(\AA)=12398 / E(\mathrm{eV}) \Rightarrow \\
& \text { few } \mathrm{keV} \text { is suitable energy } \\
& \text { for } \lambda=1 \AA
\end{aligned}
$$

- X-rays are scattered mostly by electronic shells of atoms in a solid. Nuclei are too heavy to respond.
- Reflectivity of x-rays $\sim 10^{-3}-10^{-5} \Rightarrow$ deep penetration into the solid \Rightarrow x-rays serve as a bulk probe

The Bragg Law

Conditions for a sharp peak in the intensity of the scattered radiation:

1) the x-rays should be specularly reflected by the atoms in one plane 2) the reflected rays from the successive planes interfere constructively

The path difference between the two x-rays: $2 \mathrm{~d} \cdot \sin \theta \Rightarrow$ the Bragg formula: $2 \mathrm{~d} \cdot \sin \theta=m \lambda$

The model used to get the Bragg law are greatly oversimplified (but it works!).

- It says nothing about intensity and width of x-ray diffraction peaks
- neglects differences in scattering from different atoms
- assumes single atom in every lattice point
- neglects distribution of charge around atoms

Meaning of d for 2D

$2 \mathrm{~d} \cdot \sin \theta=m \lambda$

Meaning of d for 3D
http://www.desy.de/~luebbert/CrystalCalc_Cubic.htm

Intercepts: a,a,a
Reciprocals: a/a, a/a, a/a

$$
=1,1,1
$$

Miller index for this plane : (111)

$$
d_{111}=\frac{n \cdot a}{\sqrt{3}} \approx 3.13 \mathrm{~A} \text { for Si with } a=5.431 \mathrm{~A}
$$

Calculating the angle between two planes

For cubic crystals, the angle, ϕ between two planes, $\left(h_{1} k_{1} l_{1}\right)$ and $\left(h_{2} k_{2} l_{2}\right)$ is given by:

$$
\cos \phi=\frac{h_{1} h_{2}+k_{1} k_{2}+l_{1} l_{2}}{\sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} \sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}}
$$

Example:

Calculate the angle between the (111) and (200) planes. From the above,

$$
\begin{aligned}
& \cos \phi=\frac{(1 \times 2)+(1 \times 0)+(1 \times 0)}{\sqrt{1+1+1} \sqrt{4+0+0}} \\
& \cos \phi=\frac{1}{\sqrt{3}}
\end{aligned}
$$

which produces the result, $\phi=54.75^{\circ}$.

(111)

The most important information arises when the wavelength of the radiation is similar to, or smaller than, the size of the spacing between the objects being studied.

Electron-beam (3.7 pm for 100 keV)		Scatterers (spacings)	Radiation (typical dimension)
Light (520 nm for green)		Ink dots in newsprint (0.1 mm)	
$\begin{aligned} & \text { X-ray } \\ & (0.154 \mathrm{~nm} \text { for } \mathrm{Cu} \mathrm{~K} \alpha) \end{aligned}$		Raindrops (10 mm)	
		Row of parked cars	
Sound(1.26 m at middle C)		(3 m) Precipitates in alloys (100 nm)	
Thermal radiation $(0.1 \mathrm{~nm}$ typical $)$		Atoms in crystals (0.1 nm)	
Reset	Score		
@1999 MATTER, The University of Liverpool			

SYNCHROTRON RADIATION

$\theta=4 \pi \mathrm{srad}$
$v \approx 0.99999999 c$

Synchrotron Radiation produced by relativistic electrons in accelerators (since 1947)

NSLS:

- 50 m circumference,
- Current $=1 \mathrm{~A}$,
- $\mathrm{f}=6 \mathrm{MHz}$,
- $\mathrm{E}=800 \mathrm{MeV}$ (restmass energy $\mathrm{E}_{0} \approx 0.5 \mathrm{MeV}$)
- $I \propto \lambda^{-7 / 3}$
-Synchrotron Radiation from a storage ring is the most bright manmade source of white light -Useful for materials studies from Far Infrared and UV to X-ray

Diffraction condition and reciprocal lattice

Von Laue approach:

- crystal is composed of identical atoms placed at the lattice sites T
- each atom can reradiate the incident radiation in all directions.
- Sharp peaks are observed only in the directions for which the x-rays scattered from all lattice points interfere constructively.

Consider two scatterers separated by a lattice vector \mathbf{T}.
Incident x-rays: wavelength λ, wavevector $\mathbf{k} ;|\mathbf{k}|=k=2 \pi / \lambda$;
$\widehat{\mathbf{k}}=\frac{\mathbf{k}}{|\mathbf{k}|} \quad \widehat{\mathbf{k}}^{\prime}=\frac{\mathbf{k}^{\prime}}{\left|\mathbf{k}^{\prime}\right|}$
Assume elastic scattering: scattered x-rays have same energy (same λ) \Rightarrow wavevector \mathbf{k}^{\prime} has the same magnitude $\left|\mathbf{k}^{\prime}\right|=k=2 \pi / \lambda$

Condition of constructive interference:
Define $\quad \Delta \mathbf{k}=\mathbf{k}^{\prime}-\mathbf{k}$ - scattering wave vector
Then $\quad \Delta \mathbf{k}=\mathbf{G} \quad$, where \mathbf{G} is defined as such a vector for which $\mathbf{G} \cdot \mathbf{T}=2 \pi m$

We obtained the diffraction (Laue) condition: $\Delta \mathbf{k}=\mathbf{G}$ where $\mathbf{G} \cdot \mathbf{T}=2 \pi \mathrm{~m}$ Vectors \mathbf{G} which satisfy this relation form a reciprocal lattice
A reciprocal lattice is defined with reference to a particular Bravais lattice, which is determined by a set of lattice vectors \mathbf{T}.

Constricting the reciprocal lattice from the direct lattice:

Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ - primitive vectors of the direct lattice; $\mathbf{T}=n_{1} \mathbf{a}_{\mathbf{1}}+n_{2} \mathbf{a}_{\mathbf{2}}+n_{3} \mathbf{a}_{\mathbf{3}}$
Then reciprocal lattice can be generated using the primitive vectors

$$
\mathbf{b}_{1}=\frac{2 \pi}{V} \mathbf{a}_{2} \times \mathbf{a}_{3}, \quad \mathbf{b}_{2}=\frac{2 \pi}{V} \mathbf{a}_{3} \times \mathbf{a}_{1}, \quad \mathbf{b}_{3}=\frac{2 \pi}{V} \mathbf{a}_{1} \times \mathbf{a}_{2}
$$

where $V=\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)$ is the volume of the unit cell
Then vector $\mathbf{G}=m_{1} \mathbf{b}_{\mathbf{1}}+m_{2} \mathbf{b}_{\mathbf{2}}+m_{3} \mathbf{b}_{\mathbf{3}} \quad$ We have $\mathbf{b}_{\mathrm{i}} \cdot \mathbf{a}_{\mathrm{j}}=\delta_{\mathrm{ij}}$
Therefore, $\mathbf{G} \cdot \mathbf{T}=\left(m_{1} \mathbf{b}_{\mathbf{1}}+m_{2} \mathbf{b}_{\mathbf{2}}+m_{3} \mathbf{b}_{3}\right) \cdot\left(n_{1} \mathbf{a}_{\mathbf{1}}+n_{2} \mathbf{a}_{\mathbf{2}}+n_{3} \mathbf{a}_{3}\right)=$

$$
2 \pi\left(m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}\right)=2 \pi m
$$

The set of reciprocal lattice vectors determines the possible scattering wave vectors for diffraction

We got $\Delta \mathbf{k}=\mathbf{k}^{\prime}-\mathbf{k}=\mathbf{G} \Rightarrow\left|\mathbf{k}^{\prime}\right|^{2}=|\mathbf{k}|^{2}+|\mathbf{G}|^{2}+2 \mathbf{k} \cdot \mathbf{G} \Rightarrow G^{2}+2 \mathbf{k} \cdot \mathbf{G}=0$
$2 \mathbf{k} \cdot \mathbf{G}=G^{2}-$ another expression for diffraction condition
Now, show that the reciprocal lattice vector $\mathbf{G}=h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}$ is orthogonal to the plane represented by Miller indices ($h k l$)
plane ($h k l$) intercepts axes at points x, y, and z given in units $\mathrm{a}_{1}, \mathrm{a}_{2}$ and a_{3}
By the definition of the Miller indices:

$$
(h, k, l)=\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)
$$

define plane by two non-collinear vectors \mathbf{u} and \mathbf{v} lying within this plane:

$$
\mathbf{u}=y \mathbf{a}_{2}-x \mathbf{a}_{1} \text { and } \mathbf{v}=y \mathbf{a}_{2}-z \mathbf{a}_{3}
$$

prove that \mathbf{G} is orthogonal to \mathbf{u} and \mathbf{v} :
analogously show
$\mathbf{u} \cdot \mathbf{G}=\left(y \mathbf{a}_{2}-x \mathbf{a}_{1}\right) \cdot\left(h \mathbf{b}_{1}+k \mathbf{b}_{2}+l \mathbf{b}_{3}\right)=2 \pi(y k-x h)=0$ $\mathbf{v} \cdot \mathbf{G}=\mathbf{0} \quad{ }^{37}$

Now, prove that the distance between two adjacent parallel planes of the direct lattice is $d=2 \pi / \mathrm{G}$.

The interplanar distance is given by the projection of the one of the vectors $x \mathbf{a}_{1}, y \mathbf{a}_{2}, z \mathbf{a}_{3}$, to the direction normal to the ($h k l$) plane, which is the direction of the unit vector \mathbf{G} / G

$\Rightarrow d=x \mathbf{a}_{1} \cdot \mathbf{G} / G=2 \pi x h / G=2 \pi / G$
The reciprocal vector $\mathrm{G}(h k l)$ is associated with the crystal planes (hkl) and is normal to these planes. The separation between these planes is $2 \pi / G$
$2 \mathbf{k} \cdot \mathbf{G}=G^{2} \Rightarrow 2|\mathbf{k}| \operatorname{Gsin} \theta=G^{2}$
$\Rightarrow 2 \cdot 2 \pi \sin \theta / \lambda=2 \pi / d \Rightarrow 2 d \sin \theta=\lambda$
$2 d \sin \theta=m \lambda-$ get Bragg law

Ewald Construction for Diffraction

Condition and reciprocal space

Diffraction occurs for:

$$
\begin{aligned}
& \overrightarrow{\mathrm{k}}+\overrightarrow{\mathrm{G}}=\overrightarrow{\mathrm{k}^{\prime}} \\
& \overrightarrow{\mathrm{k}^{\prime}}-\overrightarrow{\mathrm{k}}=\overrightarrow{\mathrm{G}} \\
& k=2 \pi / \lambda
\end{aligned}
$$

Reciprocal Space: Accessible Area for Diffraction

$$
\text { Summary } \quad k=2 \pi / \lambda
$$

* Various statements of the Bragg condition:

$$
2 \mathrm{~d} \cdot \sin \theta=m \lambda ; \quad \Delta \mathbf{k}=\mathbf{G} ; \quad 2 \mathbf{k} \cdot \mathbf{G}=G^{2}
$$

*Reciprocal lattice is defined by primitive vectors:

$$
\mathbf{b}_{1}=\frac{2 \pi}{V} \mathbf{a}_{2} \times \mathbf{a}_{3}, \quad \mathbf{b}_{2}=\frac{2 \pi}{V} \mathbf{a}_{3} \times \mathbf{a}_{1}, \quad \mathbf{b}_{3}=\frac{2 \pi}{V} \mathbf{a}_{1} \times \mathbf{a}_{2}
$$

* A reciprocal lattice vector has the form $\mathbf{G}=h \mathbf{b}_{\mathbf{1}}+k \mathbf{b}_{\mathbf{2}}+l \mathbf{b}_{\mathbf{3}}$ It is normal to (hkl) planes of direct lattice
* Only waves whose wave vector drawn from the origin terminates on a surface of the Brillouin zone can be diffracted by the crystal

First BZ of bcc lattice

Summary

the reciprocal space for a simple cubic lattice is simple cubic, but the other cubic lattice (BCC, FCC) are more confusing:

The BCC and FCC lattices are Fourier transforms of one another

Experimental XRD techniques

Rotating crystal method -

for single crystals, epitaxial films
$\theta-2 \theta$, rocking curve, φ - scan

Laue method - white x-ray beam used most often used for mounting single crystals in a precisely known orientation

How are diffraction experiments done?
 X-ray Diffraction Setup

High Angular Resolution X-ray Diffraction Setup
B11 Tiernan

D8 Discover

Example of High Angular Resolution X-ray Diffraction analysis of a SiGe film on Si substrate

Normal mismatch

$$
(\Delta c / c)=\left(c_{L}-c_{S}\right) / c_{S}=\frac{\sin \omega_{S}}{\sin \omega_{L}}-1
$$

Assuming $\Delta a / a=0$, Concentration of $G e$ can be evaluated

Thickness
$t=\frac{\lambda \sin \omega_{e}^{0}}{\sin 2 \theta_{B}\left|\eta_{1}-\eta_{2}\right|} ; \omega_{e}^{0}=\theta_{B}+(\pi / 2-\varphi)$.
$\varphi=\arcsin \left((\mathbf{h n} / k) / 2 \sin \theta_{B}\right)$
$\eta_{1,2}$ angular deviations of fringes relative to the 0 -order layer peak

