Phys 446:
Solid State Physics / Optical
Properties

Fall 2015
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Solid State Physics
Lecture 2
(Ch. 2.1-2.3, 2.6-2.7)

Last week:

* Crystals,
* Crystal Lattice,

* Reciprocal Lattice
Today:
* Types of bonds in crystals

Diffraction from crystals

* Importance of the reciprocal lattice concept
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(3) The Hexagonal Closed-packed (HCP)

structure
Be, Sc, Te, Co, Zn, Y, Zr, Tc, Ru, Gd,Tb, Py, Ho, Er, Tm, Lu, Hf, Re, Os, TI

* The HCP structure is made up of stacking spheres in a ABABAB...
configuration

* The HCP structure has the primitive cell of the hexagonal lattice, with a basis of
two identical atoms

* Atom positions: 000, 2/3 1/3 %2 (remember, the unit axes are not all
perpendicular)

* The number of nearest-neighbours is 12

* The ideal ratio of c/a for Rotated
this packing is (8/3)"2 = 1.633 three times
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Conventional HCP unit cell

Crystal Lattice

14 Bravais Lattices which can be assigned

A-\ g fo to 7 different Crystal Systems
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A s a) primitive
170 170) 17c) b) space centered

NER

B

'—.
N
229
IR
Qo o
Il
009

)

c) face centered

http://www.matter.org.uk/diffraction/geometry/reciprocal_lattice_exercises.htm
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Reciprocal Lattice

crystal lattice point: R=na, +ma, +nya, .
= o B p " agi' . o =h|
reciprocal lattice point: G — b, + hyby + b, o z S .
L4 b s | - - 1 51

primitive translations of the reciprocal lattice:

~ d,xd ~ ;% a - da, xd
b=2r—2——  b=2r——1— by =2r———
a, - a, xa, a,-a, xd, a,-a,xd,
properties: a-b, =2rd, or R-G=m2x
fundamental property of a crystal lattice: ==
translation invariance of electron- / scattering-density: p(r)=p(+R)
= -7 (GG GF _ =
p)=3 pee” with  PF+R)=D p P =3 p.e®" = p(F)
G G G
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Some examples of reciprocal lattices
1. Reciprocal lattice to simple cubic lattice

a,=ax, a=ay, a=az V=a;(axay)=a®> =
b, =Q2n/a)x, b,=Q2n/a)y, b;=2n/a)z =

reciprocal lattice is also cubic with lattice constant 2n/a

1
a :%a(—x+y+z) a, =50(X—y+2)

= Labirya) vl le

b, =2 (y+2) b, =2 (x+2) by=""(x+y)
a a a
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got b, =2—”(y+z)

b, = 2_” (X + y) J :
a P
but these are primitive A
vectors of fcc lattice

So, the reciprocal lattice to bcc is fcc.

Analogously, show that the reciprocal lattice to fcc is bcc
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Brillouin zones

Determine all the perpendicular
bisecting planes in the reciprocal —
lattice .

1¥ Brillouin zone

First Brillouin zone - the Wigner-
Seitz cell of the reciprocal lattice

Second Brillouin zone: Higher Brillouin zones:
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Brillouin zones of cubic lattices

First BZ of a BCC lattice First BZ of an FCC lattice
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Summary
“ Reciprocal lattice is defined by primitive vectors:

2 2 27
b, =—a, xa,, b, =—a,xa,, b,=—a, xa,
v oV R 4 -

“+ A reciprocal lattice vector has the form G = ib, + kb, + Ib,
It is normal to (hkl) planes of direct lattice

+ First Brillouin zone is the Wigner-Seitz primitive cell of the
reciprocal lattice

+ Simple cubic — cube; bcc — Rhombic dodecahedron;
fcc — truncated octahedron (figures on the previous slide)
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Indexing system for crystal
planes

X-rays
+ Since crystal structures are y \\ @ /(;'

planes of atoms), it is useful
to develop a system for

obtained from diffraction
experiments (in which reflecting J \b\ /@ / k
particles diffract from lattice Plﬂﬂesl @\ /6 d

indexing lattice planes. p (1) (10)
. Py @ -0
e We can use the lattice a * P +-0-0-3-0-9
constants a,, a,, a;, but it & & PP 0000
turns out to be more useful 29900
to use what are called Miller JOPQPQOQPOOQ
Indices. 90000000
PNEN NN RN R Y 5]
Index ENCNCNCNC R R
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Rules for determining Miller Indices

* (1) Find the intercepts on z
the axes in terms of the

lattice constants a,, a,, a;. " example:

* (2) Take the reciprocals
of these numbers and then
reduce to three integers
having the same ratio, %
usually the smallest of the ntercepts: a, «,
three integers. The result, Reciprocals: a/a, a/~, a/«~
listed as (hkl), is called the =100

. Miller index for this plane : (1 0 0)
index of the plane. (note: this is the normal vector for this plane)

(2,0,0)
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Examples of Miller Indices

2 F
(0,0,a)
(0,0.0) 020,
20.0) (2,0,0)

X Intercepts: a, a,°

Reciprocals: a/a, a/a, a/=

=1,1,0

Miller index for this plane : (1 1 0)

Lecture 2

Intercepts: a,a,a
Reciprocals: a/a, al/a, ala
=1,1,1

Andrei Sirenko, NJIT

Miller index for this plane : (1 1 1)

13

Examples of Miller Indices

Z
Intercepts: 1/2a, a,»
Reciprocals: 2a/a, a/a, a/=
=2,1,0
Miller index for this plane : (2 1 0)
0,a,0
(0,2,0) y
{*42,0,0)

Lecture 2
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Notes on notation

*  (hkl) might mean a single plane, or
a set of planes

+ Ifaplane cuts a negative axis, we
have minus signs in the (%k7) (ie.

(hkD))

+ Planes are denoted with curly
brackets (hkl)

* A set of faces are denoted {hkl}

* The direction of a crystal (for
example, along x for a cubic crystal)
is denoted with [uvw] (ie. The [100]
direction)

* In cubic crystals, the direction [Ak]] ,[1 OQ]
is perpendicular to the plane (kkl) direction
having the same indices, but this
isn’t necessarily true for other
crystal systems X
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{001} face

y

[001] direction

Inter-atomic forces

and

types of bonds in solids.
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Interatomic forces
What holds a crystal together?

Attractive

Attractive electrostatic interaction il ‘\ - Flrchion clotid
between electrons and nuclei — S —> L,
. Repulsive T~ Nucleus

the force responsible for \_} e
cohesion of solids

k T

— | Force:

0 R

= || equilibrium 1 oV (R)

cl | " F(R)=-—-

Q | position

© I| R oR

O Lo .~

o | e F(R) <0forR>R,:

51 | s | attraction

g\l / F@R)>0forR<R,:

E ,_L-'ﬁ)inding.energyl _ 1 rePU|Sion

Interatomic distance R

Types of bonding
I. lonic crystals

Usually involve atoms of strongly different electro-negativities
(Example: alkali halides).

|
b
2

A 3

U(R)=-N ae N o

4rg,R R"

5f-

attractive/ f . R
(Coulomb) repulsive = i )

lonic bond is strong H L

(binding energy - few eV/pair) .

= hardness, high melting T i
10
electrons are strongly localized -
insulators in solid form T
=> insulators in solid fo KCI: energy per molecule vs R -
Typical crystal structures: NaCl, CsCl (from Kittel)
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[I. Covalent crystals
— Electron pair bond: usually one electron from each atom
— Electrons tend to be localized in part between the two atoms
— The spins of electrons in the bond are anti-parallel

— Gap between fully occupied and unoccupied states — dielectrics
or semiconductors

Directionality of covalent bonds. Example: carbon
Hybridization. 2s22p? — 2s2p,2p,2p, : sp® tetrahedral configuration

Also possible sp2  2s2p,2p, — planar (graphite, fullerenes)
remaining p, : interlayer n-bonding

Covalent polar bond (many compound semiconductors) —
intermediate case between non-polar and ionic bond. Described by
effective ionic charge or fractional ionic character (between 0 and 1:
0 for Si or diamond, 0.94 for NaCl). Covalent bond is also strong,

binding energies of several eV per atom
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1. Metals

— Most elements in periodic table

— High electrical and thermal conductivity

— High density

— Considerable mechanical strength, but plasticity

These properties can be explained considering the metallic type of bond

Example: alkali metals — single electron weakly bound to atom — easily
delocalized.

In contrast to covalent bonding, electronic wave functions are very extended
compared to interatomic distances. Why total energy is reduced ?

Partially occupied electronic bands — electrons can move freely

Group Il metals — two s electrons — should be fully occupied...
but overlapped with empty p-states

Transition metals: d-electrons are more localized — form covalent-like bonds; s
and p-electrons again form a common band

Metals crystallize in closely packed structures (hcp, fcc, bece)
Lecture 2 Andrei Sirenko, NJIT 20
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IV. Van der Waals bonds

Inert gases: outer electronic shells are full — no ionic or covalent forces

Weak interatomic forces due to quantum fluctuations of charge — arising
dipole moments cause a weak attractive force

Can be described in the quantum-mechanical model of two linear oscillators
(given in Kittel) — results in R dependence of potential

Binding energy in order of 0.1 eV

Crystal structures are fcc (electronic distribution is spherical, atoms pack as
closely as possible)

Van der Waals forces are also responsible for bonding in organic molecular
crystals. Molecules are weakly bound; often form low-symmetry crystals

They also exist in covalent or ionic crystals, but negligible

V. Hydrogen bonds
Formed between two strongly electronegative atoms (F, O, N) via H

Example: ice Binding energy is also ~0.1 eV
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Summary

“*Repulsive interaction between atoms is primarily due to
electrostatic repulsion of overlapping charge distributions and
Pauli principle

“»Several types of attractive forces:

* lonic crystals — electrostatic forces between "+" and "-" ions

» Covalent bond: overlap of charge distributions with
antiparallel spin

* Metals: reduction of kinetic energy of electrons in free state
compared to the localized state of a single atom

» Secondary forces (Van der Waals, hydrogen) become
significant when the other bonds are impossible, e.g. in inert
gases

“*Physical properties are closely related to the type of bonding
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DIFFRACTION

&>
||
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Diffraction of waves by crystal lattice
* Most methods for determining the atomic structure of crystals are
based on scattering of particles/radiation.
¢ X-rays is one of the types of the radiation which can be used
¢ Other types include electrons and neutrons

* The wavelength of the radiation should be comparable to a typical
interatomic distance of afew A (1 A =10-19m)

MA) = 12398/E(eV) =
he he
E=hv=—"=Al=— few keV is suitable energy
A E
forn=1A

* X-rays are scattered mostly by electronic shells of atoms in a solid.

Nuclei are too heavy to respond.
* Reflectivity of x-rays ~10-3-10-° = deep penetration into the solid
= Xx-rays serve as a bulk probe
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The Bragg Law

Conditions for a sharp peak in the
intensity of the scattered radiation:

1) the x-rays should be specularly
reflected by the atoms in one plane

2) the reflected rays from the _
successive planes interfere constructively ! dsinf

The path difference between the two x-rays: 2d-sinf =
the Bragg formula: ~ 2d-sind = mA

The model used to get the Bragg law are greatly oversimplified
(but it works!).

— It says nothing about intensity and width of x-ray diffraction peaks
— neglects differences in scattering from different atoms
— assumes single atom in every lattice point

— neglects distribution of charge around atoms
Lecture 2 Andrei Sirenko, NJIT
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The Bragg Law and Diffraction grating

Compare Bragg Law

A

L
L

N
---=
L

2d-sinf = m

S

-

- - . -
A A A : \ dsin®
Diffraction Grating '
A diffraction grating is the tool of choice for separatmg the colors m . .
incident light X-ray Diffraction
Incident
plane
e ] =2 > 100_
W
Grating e ——) (= 2 = &0 i
@
| M =1 E 60
] 111 = 1 t—
£ 4 ‘
| =0 o
B . ‘
v | | | |
S — e L . il ’.-'l—""'T WY . .
| ®=1 30.00 40.00 50,00 60.00 70.00 BO.00 20.00 100.00
e 111 = 2
m=2 (a) 20 (Degrees)
Equal mixture -
of red and blue | —— =2
[P The condition for maxmum intensity is the same as that for a
i-._//e double slit However, angular separation of the maxima is generally
T sin0- mh much greater because the slit spacing is so small for a diffraction
f grating
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http://www.matter.org.uk/diffraction/geometry/superposition_of_waves_exercises.htm
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Meaning of d for 2D

2d-sinf = m\
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Meaning of d for 3D :
http://www.desy.de/~luebbert/CrystalCalc_Cubic.htm

. (0,0,a)
z 2d-sinf = mh
d 111
(0,0.a) \<
(0,a,0) y
(a,0,0)
(0,,0) y X
(20,0} d — n
hkl — 5 > 2
Intercepts: a,a,a h k /
Reciprocals: a/a, a/a, ala —2 —2 —2
=11.1 a- b- ¢

Miller index for this plane : (1 1 1)

=——=3.13 Afor Siwitha=5431A

l 11 \/_
Andrei Sirenko, NJIT
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Calculating the angle between two planes

For cubic crystals, the angle, ¢ between two planes, (hlkl 1‘1) and (h 1is given by

2 'i:‘.] I2

by + Ik, + i,
B I i 41

cosg =

Example:

Calculate the angle between the (111) and (200) planes.

From the above,

_ (1%2) +(1x0) + (1% )
J1+1+14+0+0

cos ¢

cosgp=—

1
NE]

which produces the result, 4 = 54.75°. l['l 11)
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X-rays are EM waves

« Increasing Frequency (v)

107 0 107 0" 0" o' 107 0" 10" 10° w 100 0" v(Hz)
! | i ! i ! V | | | | |
rays X ray: uv IR Microwave (FM| AM| Long radio waves.
Radio waves
v 15
N U1 T S T Tt I 1) 0?0 10 10 10° 10° dmy
- - Increasing Wavelength (A) —
Visible spectrum B
o s  NJIT 30
a0 so0 o0 700

Increasing Wavekngth (. in nim —
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The most important information arises when
the wavelength of the radiation is similar to,
or smaller than, the size of the spacing between
the objects being studied.

Electron-beam Scatterers
(3.7 pm for 100 keV) (spacings)
Liaht Ink dots in newsprint

Raindrops

g
(0.154 nm for Cu Ke) Row of parked cars
Sound Em .
{1.26 m at middle C) Precipitates in alloys

(100 nm)

Atoms in crystals
(0.1 nm)

Thermal radiation
(0.1 nm typical)

Reset Score

1888 MATTER, The University of Liverpoal

Radiation
{typical dimension)

Lecture 2 Andrei Sirenko, NJIT 31
j
1
X-rays and X-ray tube :
6 0
1
B L . Ld 7 b X L4
J— ’ .
ragg Law 2d-sinf = mh S I d
'
3
_ L g * L 4
form=1 2d >\ b\ dsing
£, (eV) X t b
-
Mas (3) Heated filament Electrons are accelerated ray tube
Mz 3(3) —————————————@—— 75 emits electrons by by a high voltage
M, @) — 122 thermionic emission [
Copper rod lor
Ly (2pg72) 933 heal dissipalion
Ly (2n42) 952 S~ L
L, (25) 1087
y
K1 Kaa Kg $ ?é’. high speed electrons i
? ? hit the metal target.
Ko1s) X-ray K-series spectral line wavelengths {nm)
for some common target materials.[*]

. Target  Kp. Kp= Ko, Koz
EIeCtronIC Fe |0.17566 |0.1744Z |0.193604 0.193298
transitions Ni 015001 (014886 |0165791 0.166175

Cu |0.139222|0.135109 | 0.154056 0.154433
Lecture 2 Zr  0.070173)0.088993 0.078593 0.078015

Me 0.0683229 (0.0682099 0.070930 0.071359
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X-rays and Synchrotrons

Bragg Law 2d-sinf = mh

i ) : \-dsinG-

Synchrotron radiation

Natural Synchrotron Radiation

Stars and
Galaxies
strongly bundied
Q(T_\b polarized |__._'s'ync]'|-roﬁ'm -Ril.d'l:dl.i.uli
precisely calculable —
tomporetstrciure AT Accelerating electron
e =i emits light
- high intensity ssganon 5 _____k
large energy range
Lecture 2 Andrei Sirenko, NJIT 33
. - Synchrotron
SYNCHROTRON RADIATION Radiation
v<<e v ~ 0.99999999 ¢ produced by
relativistic
electrons in

accelerators
(since 1947)

, s LT =

7 =\Ef;r srad

'I.’-‘

[ 2
t’?le— — = 0.001 srad
ol

NSLS:

50 m circumference,

Current=1 A,

f=6 MHz,

E=800MeV (restmass energy Ey=0.5MeV)
I

*Synchrotron Radiation from a storage ring
is the most bright manmade source of white light
*Useful for materials studies from Far Infrared and UV to X-ray

Lecture 2 Andrei Sirenko, NJIT 34
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Diffraction condition and reciprocal lattice

Von Laue approach:

— crystal is composed of identical
atoms placed at the lattice sites T

— each atom can reradiate the incident
radiation in all directions.

— Sharp peaks are observed only in the
directions for which the x-rays
scattered from all lattice points kT KT

interfere constructively.

Consider two scatterers separated by a lattice vector T. k = k k= K’

Incident x-rays: wavelength i, wavevector k; |K| = k= 2n/A; \k\

Assume elastic scattering: scattered x-rays have same energy (same 1) =

wavevector k' has the same magnitude |K'| = k= 2n/A

Condition of constructive interference: (k'_k) T =2mm
Define Ak=k'-k - scattering wave vector

Then Ak=G , where G is defined as such a vector for which G'T =2nm
Lecture 2 Andrei Sirenko, NJIT 35

We obtained the diffraction (Laue) condition: AK =G where G- T =2nm
Vectors G which satisfy this relation form a reciprocal lattice

A reciprocal lattice is defined with reference to a particular Bravais lattice,
which is determined by a set of lattice vectors T.

Constricting the reciprocal lattice from the direct lattice:
Let @, a,, a5 - primitive vectors of the direct lattice; T = n,a; + n,a, + n;a,

Then reciprocal lattice can be generated using the primitive vectors

2 2 27
b,=—a,xa,, b,=—a,xa,, b, =—a xa,
;XA 2 TR . % >

where V' = a,:(a,xa3) is the volume of the unit cell

Then vector G = m,b; + m,b, + m;b;, We have b;-a; = d;

Therefore, G-T = (m,b, + m,b, + m;b;)-(n,a, + n,a, + nya;) =
2n(mn,+ myn,+ msny) = 2nm

The set of reciprocal lattice vectors determines the possible scattering wave
vectors for diffraction
Lecture 2 Andrei Sirenko, NJIT 36
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Wegot Ak=K'-k=G = K'?= kP +|GP +2k-G = G +2k-G=0
2k-G = G? - another expression for diffraction condition

Now, show that the reciprocal lattice vector G = hb, + kb, + /b, is
orthogonal to the plane represented by Miller indices (/kl)

plane (hkl) intercepts axes at points
X, ¥, and z given in units a,, a,and a,4

By the definition of the Miller indices:

define plane by two non-collinear vectors u and v lying within this plane:
u=ya,—xa, and v=ya,—za,

prove that G is orthogonal to U and V:
analogously show

u-G =(ya, —xa )«(hb, + kb, +/b,) =27(yk —xh)=0 veG =0 37

Now, prove that the distance between two adjacent parallel planes of
the direct lattice is d =2n/G.

The interplanar distance is given by
the projection of the one of the

vectors xa,, ya,, za;, to the direction
normal to the (hkl) plane, which is
the direction of the unit vector G/G

= d=xa,G/G=2xxh/G=2n/G

The reciprocal vector G(%kl) is associated with the crystal planes (/1k/) and
is normal to these planes. The separation between these planes is 21/G

RS

2k-G = G? = 2|K|Gsind= G?

— 22nsin@/h = 2n/d = 2dsinf= A . AK

2dsinf= m\ - get Bragg law E&J%
Lecture 2 Andrei Sirenko, NJIT 38
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Ewald Construction for Diffraction

Condition and reciprocal space

T | T

L ™~

— —> —

/ \ K+G=K

{ \ Or

—_— — —

—k=G

10.2)

0.1)

Ak L [=W@n

(0.0)|(1,0) |(2.0)
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Diffraction occurs for:

Reciprocal Space: Accessible Area for Diffraction

[ ioou
‘ Kl ’
wavelength too long 4/2d > 1
o £28) o128 o 008 ol228) @ cLB)

(1% o222
incident beam below surface exit beam below surface
o 330 olilll el 23
o 0 Mt 1000) [ g2
hnidi —
Transmission Geometry
Lecture 2 Andrei Sirenko, NJIT 40
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Summary = 2m/%
% Various statements of the Bragg condition:
2d-sinf = m\ ; Ak=G ; 2k-G = G?
+ Reciprocal lattice is defined by primitive vectors:
b, :2—”512 xa,, b, :2—ﬁ33 xa,, b, :2—)Ta1 Xa,
V V V

% A reciprocal lattice vector has the form G = ib, + kb, + Ib,
It is normal to (hkl) planes of direct lattice

+“ Only waves whose wave vector drawn from the origin
terminates on a surface of the Brillouin zone can be diffracted

by the crystal  r;qt B7 of boc lattice

Lecture 2

Summary

the reciprocal space for a simple cubic lattice is
simple cubic, but the other cubic lattice (BCC, FCC) are
more confusing:

The BCC
and FCC
lattices are
Fourier
transforms
of one
another

fcc WS cell bee BZ

Lecture 2 Andrei Sirenko, NJIT 42
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Experimental XRD techniques

Rotating crystal method —
for single crystals, epitaxial films
6-20, rocking curve, ¢ - scan

X-fayS produced whan
high speed alecirons
f % hitthe metal target.

Powder diffraction

Laue method — white x-ray beam used most often used for mounting
single crystals in a precisely known orientation
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Applications of X-ray Diffraction for crystal and

thin-film analysis Bad Qualty Sample

crystallinity
texture @
______ E ; roughness
thickness
_ lattice V1] dislocations,
mismatch T i relaxation
Lecture 2 Andrei Sirenko, NJIT 44
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Applications of X-ray Diffraction for hetero-structures
(one or more crystalline films grown on a substrate)

Ge

Si,,Ge,

- ‘—“‘ /’a r
!;'“" :

Si

Example: Si;  Ge,/Si structure

Concentration influences lattice constants

Andrei Sirenko, NJIT 45

How are diffraction experiments

done?
X-ray Diffraction Setup

Anti-scatter slide
Collimating slit
-
Crystal Mickel filter
X-ray source — 2B 1 a
f o
Counter

Lecture 2 Andrei Sirenko, NJIT 46
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High Angular Resolution X-ray Diffraction Setup
B11 Tiernan

Gobel mirror Channel-cut analyzer

X-ray tube ol
\ -

D8 Discover

Channel-cut monochromator Detector

Motorized slit
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Example of High Angular Resolution X-ray Diffraction
analysis of a SiGe film on Si substrate

Normal mismatch

Intensity

: |Substrate] sine
s-ee(uuV (Aclc)=(c, — ;) e — 25 )
sin e,

1108 i E

10°|

Assuming Aa/a = 0, Concentration of Ge can be
evaluated

Thickness
10* |
Asine!

sine, c @l =0, +(7/2— ).

10°

N M

17"0‘ 7 T T T T T T T T T T T T T L L B T Tt : .

3374 3388 3402 3416 343 3449 3458 2472 2486 35 iy angular deviations of fringes refative to
oiega, deg the 0-order layer peak

(P R
sin2éd, | n, —n,

@ =arcsin((hn/k)/2smdy)
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