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Solid State Physics

(Ch. 2)

Last week:

Lecture 3

* Crystals, Crystal Lattice, Reciprocal Lattice,

Diffraction from crystals

» Today:

* Scattering factors and selection rules for

diffraction

* HW?2 discussion
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The Bragg Law

Conditions for a sharp peak in the
intensity of the scattered radiation:

1) the x-rays should be specularly
reflected by the atoms in one plane

2) the reflected rays from the _
successive planes interfere constructively ! dsinf

The path difference between the two x-rays: 2d-sinf =
the Bragg formula: ~ 2d-sind = mA

The model used to get the Bragg law are greatly oversimplified
(but it works!).

— It says nothing about intensity and width of x-ray diffraction peaks
— neglects differences in scattering from different atoms
— assumes single atom in every lattice point

— neglects distribution of charge around atoms
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Diffraction condition and reciprocal lattice
Von Laue approach: \ k — /Y
_.:H: J"'-

— crystal is composed of identical atoms placed
at the lattice sites T

— each atom can reradiate the incident radiation
in all directions.

— Sharp peaks are observed only in the
directions for which the x-rays scattered from
all lattice points interfere constructively.

—koT KT

Consider two scatterers separated by a lattice vector T.

Incident x-rays: wavelength 1, wavevector k; |k| = k = 2n/; (K'—K)- T =27mm
Assume elastic scattering: scattered x-rays have same energy (same i) =
wavevector k' has the same magnitude |K'| = k= 2n/A -k - K

K Ik

Condition of constructive interference: (R'—R)-T =mA or

Define Ak=Kk'-k - scattering wave vector

Then Ak=G ,where G is defined as such a vector for which G-T =2nm
We got Ak=k'-k=G = k'[?= |k +|G]> +2k-G = G2 +2k-G =0

2k-G = G? — another expression for diffraction condition
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Ewald Construction for Diffraction

Condition and reciprocal space

h . Diffraction occurs for:
— — —»
/ \ k+G=VK
( \ Or
—l; —_— —»
\ 24 " / — ™ im
K k=2m/h
0,2)
0,1)
L‘_K.—‘ @)
| Y.
0.0) |1.0] |(2.0)
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Geometric interpretation of Laue condition:

2k G = G2 = k- l(; = iG 2 / Bragg plane
{2 ] (2 ) L

0 l'G|
=

— Diffraction is the strongest (constructive interference) at the
perpendicular bisecting plane (Bragg plane) between two reciprocal
lattice points.

— true for any type of waves inside a crystal, including electrons.

— Note that in the original real lattice, these perpendicular bisecting

planes are the planes we use to construct Wigner-Seitz cell
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Geometric interpretation of Laue condition:
kG =G = k-[lG] e
2 2

From the Laue condition, a different condition for diffraction can be derived. It is again equivalent to both
Laue and Bragg

Bragg plane

k'-k=Gandsok'=G+k

Taking the dat praduct of both sices,

(k'ek)=(G+kje(G+k) B — ¢
— %

Hence k' ok'=GeG+2Gek+kek

But the magnitudes of k and k" are equal so k' « k' and k » k cancel

Hence 2Gek=-Go G

Ifthere is a reciprocal lattice point at the position G there is also one at -G so the minus sign is

Unnecessary.
Hence k# 4G = [ 4G |2 <—Diffraction occurs abott this plare
N%G
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Summary k = 1/ /J

++ Various statements of the Bragg condition:
2d-sinf = m\ ; Ak=G ; 2k-G = G2
+ Reciprocal lattice is defined by primitive vectors:
2 27 27
b, =—a, xa;, b,=—a,xa,, b;=—a, xa,
| -V R 4 -

% Areciprocal lattice vector has the form G = kb, + kb, + Ib,
It is normal to (hkl) planes of direct lattice

+ Only waves whose wave vector drawn from the origin
terminates on a surface of the Brillouin zone can be diffracted
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Solid State Physics
Lecture 3 (continued)
(Ch. 2)

Atomic and structure factors
Experimental techniques:

Neutron and electron diffraction
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Diffraction process:
1) Scattering by individual atoms
2) Mutual interference between scattered rays

Scattering from atom

; 2
. . K-r—
Consider single electron. Plane wave u = Ae™"™ k= ‘k‘ =

. " A i(kR—ot) .
Scattered field: u = fe —e f. — scattering length of electron
R R — radial distance

A4 iAk-
Two electrons:  u'= f, Ee”‘R [1 +e" r]

A el ik AK.
or, more generally  u'= f, —e™* [e’Ak 4 /K rz]
R

u' f A eikR Z emk-r, similar to single electron with
many electrons: ‘R _ iAk,

1 f=f£>e
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2
intensity:

I~ ‘f‘ :fe2 Zemk.rl

/

this is for coherent scatterers.  If random then I~Nfe2

12
Scattering length of electron: f, = [(1 +cos’ 29)/2} v,

2
L ¢ o 28x10"m
4re, mc

classical electron radius r,=

In atom, fezemk-r, N fej'n(r)emk»rldar
1

n(r) — electron density

iAk- . .
f, = J‘n(l’)e’A "d’r - atomic scattering factor (form factor)
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Atomic scattering factor (dimensionless) is determined by

electronic distribution. -
If n(r) is spherically symmetric, then E
fa
* 3
2
E sin(Ak -r 1
fa = J47n’2n(r)—( )d,,- o 02 o4 o8
0 Ak-r Sin /A
in forward scattering Ak = 0 so f. = 4ﬂjr2n(r)dr =7

Z - total number of electrons
Atomic factor for forward scattering is equal to the atomic Z number

(all rays are in phase, hence interfere constructively)
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Scattering from crystal

crystal scattering factor: f. = Zemk'” = Z 1R
! !
R, - position of /" atom, £, - corresponding atomic factor

rewrite f, =F-S

iAks; - structure factor of the basis
where F = e ) T
;f“f summation over the atoms in unit cell

and S = ZeiAKR,C - lattice factor, summation over all
1

unit cells in the crystal

Where R, =R;+s,
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Since Ak =G,

_ iG-R; _ i2am __
the lattice factor becomes S= Ze L= Ze =N
I I

Then scattering intensity 7~ |f,|> where f,=F-N= NZ ﬁljeiG's»f
J

G =G, =hb;+ kb, + Ib, if s, =wa;+va,+wa,

. i(uja+va+waz)(hby+kb,y +l03) 27i(hu;+kv;+iw;)
Then F—Zfaje _Zfaje
J J

structure factor structure factor
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Structure factor of the SC lattice

+ The structure factor f/ does not have to
be real, because the intensitv of the x-ray
goes like F-F However, F-F must be
real.

+ For asimple cubic lattice, the structure
factor is easy to calculate:

The basis is one atom, at (0, 0, 0).

(This will produce all the atoms in the unit
cell by translation)

F(h,k,l)= f(exp0)= fa

This means all of the reflections where Ak
= G are allowed (so we see all reflections
of the form (hkl), eg. (100), (110), any
combination of integers). We will see that
this is not true for the BCC and FCC
lattice
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Example: structure factor of bcc lattice (identical atoms)
27i(hu;+hv; +lw,
structure factor F= Zfaje il hy)
J
Two atoms per unit cell: s, = (0,0,0); s, = a(1/2,1/2,1/2)

F=f [1+em'(h+k+l)]

= F=2f, if h+k+l iseven, and F=0 if h+k+/ isodd
Diffraction is absent for planes with odd sum of Miller indices

For allowed reflections in fcc lattice h,k,and | are all even or all odd
4 atoms in the basis.
What about simple cubic lattice ?
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factor £,

& s

opposite to illustrate the bec unit call.

The structure factor for the bee unit cell is
therefare:

Fe ook ly

=S+ empluilh+k+I))

BCC structure

Consider the bee lattice with single atoms at each
lattice point, its unit cell can be reduced to two
identical atoms. &tom 1 is at 000 with scattering
factorf, and atom 2 is at 4§ with a scattering

Click on the animation

i
2 x

For diffraction from a plane where the sum of
h+ie+ is odd, the second term is -1, so

Frodg =A1-11=10
If h+k+H is even, the second term is +1, so
Fravan =A1+1) = 2F

Thus, diffractions from bece planes where h+k+ is
odd are of zero intensity. They are forbidden
reflections. These reflections are usually omitted
””” from the reciprocal lattice.

[
é, baec @ 4
\> % Click on the animation

REGIPY'OC‘E" oppaosite to illustrate the forbidden reflections
space from the bee unit cell.
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Structure factor of the BCC lattice

What does this mean? Metallic sodium, for example, is BCC. The
diffraction pattern does not contain lines such as (100), (300), (111),
etc. — whenever the sum of integers hkl is odd. However, there are

lines such as (200), (110), (222), etc.

The physical reason is that reflections with ‘h+k +1 = odd refer to
planes of atoms where the rays are out of phase by 1, so that each
ray, from plane to plane, cancels out the next ray, and the net

intensity is zero.

An example: (100) reflection in the BCC cell:
0 phase

T phase
_» 211 phase

d
100 W@
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1st plane
2nd plane
3rd plane
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Structure factor of the FCC lattice

+ Forthe FCC lattice, we have the basis
(identical atoms at both pesitions):

x,=0y,=02z,=0
X, =0y, =% z,=%
X;=%2y;,=02z3="%
Xg=%2y,=%2z,=0

* So, this means that F(h,k,l) :
F(h,k,I)= fTl1+exp(=iz(h+k)+exp(—iz(h+1)+exp(=iz(k +1)]

*+ Therefore, if all the indices are even integers, or all are odd F'(h,k,[)
=4f If 1is even. and 2 are odd, then F'=0. If 1is odd, and 2
are even, then /' is zero. This means that no reflections can
occur for which the indices are partly even and partly odd.
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Structure factor of the FCC lattice

Nickel has an FCC structure:

All even (hkI) or All odd (hkl)

FiG. 58. A section of a powder diffraction pattern for nickel at a wavelength of 1-14 A recorded on the PANDA diffractometer at
AER.E.Harwell using a germanium monochromator. Counts are made at intervals of 0-1° of 20. (Courtesy of R. F. Dyer.)

Note: There are no reflections with mixtures of odd and even indices (eg. (110))
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to 4 sulpur atoms
and 4 zinc atoms

=

‘ Reduce unit cell

Structure Compound: Calculation

"

J Sulphu

) Zinc

Structure factor calculation

Consider a general unit cell for this type of structure. It can be reduced to 4 atoms of type & at 000, 0 44,
$od 440 ie. inthe foo position and 4 atoms of type B at the sites $£44 from the & sites. This can be
expressed as:

TRkl

F={f;\+f392 ¥,

The structure factors for this structure are:
F=10 if b, &, I mixed (just like fcc)
F=4f, [t5) ifhkIalodd

F=4if, -fp) ik k1 alleven and h+ k+1 = 2n where n=odd (e.g. 200)
F=d4if, +f,) ifhk1alleven and i+ k+! = 2n where n=even (e.g. 400)
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CPH

Close-packed hexagonal describes a way for atoms
{considered as hard spheres) to pack together to fill
space. The first layer (&) consists of an hexagonal array of
atoms. The next layer (B) sits in the hollows of the first
layer. The third layer duplicates layer A, giving an ABAB...
structure. (See fcc.)

B ] conee

« forbidden reflections for the hep structure occur when h+2k =
3n and!is odd, where » is an integer (e.g. 113 is forbidden),
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Low Energy Electron Diffraction (LEED)

Fluorescent screen me=——

A= hip = h/(2mE)"?

E=20eV > A=x2.7A;
200 eV — 0.87 A

Electron Gun

Sample

Small penetration depth (few tens of A)
_ Surface anaIySIS Elastically aiftracted alectrons SL=m
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Reflection high Energy Electron Diffraction (RHEED)

*® Glancing incidence: despite the high energy of the electrons
(5 — 100 keV), the component of the electron momentum
perpendicular to the surface is small

* Also small penetration into the sample — surface sensitive technique

* No advantages over LEED in terms of the quality of the diffraction
pattern

* However, the geometry of the experiment allows much better
access to the sample during observation of the diffraction pattern.
(important if want to make observations of the surface structure
during growth or simultaneously with other measurements

® Possible to monitor the atomic layer-by-atomic layer growth of
epitaxial films by monitoring oscillations in the intensity of the
diffracted beams in the RHEED pattern.
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MBE and Reflection high Energy Electron Diffraction (RHEED)

SUBSTRATE
HOLDER & HEATER

HIGH ENERGY ASS SPECTR
ELECTRON | ’lx ROMETER
DIFFRACTOMETER [& j:

g — T = E-GUN
W . 000&
12 “~ PROCESS
(FZ = ooyl | CONTROL
% SPUTTERING | ““UNIT
A 78
AUGER I
CYUNDRICAY, | | 60 As Sb Sn
ANALYZER SHUTTER CONT.
ur.!uo l | | THERMOCOUPLES
l HEATER CONTROL
NITROGEN 4 prne
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Real time growth control by

MONOLAYER GREWTH

g Py % 4
o —

&

z
° 2
E : WTQ\’ |
= 2 | f/\/W\ﬂ A
5 Lt
© « Bafﬁgﬁ gl’{_ltunxopcn

rei Sirenko,l\?JlT 200 AOO 'ﬁmgec)laoo 12‘00 14206

110 azimuth
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Neutron Diffraction
* A= h/p = h/(2mE)"? mass much larger than electron =
A~1A — 80meV Thermal energy kT at room T: 25 meV
called "cold" or "thermal' neutrons
* Don't interact with electrons. Scattered by nuclei

® Better to resolve light atoms with small number of electrons, e.g.
Hydrogen

¢ Distinguish between isotopes (x-rays don't)
* Good to study lattice vibrations
Disadvantages:

* Need to use nuclear reactors as sources; much weaker intensity
compared to x-rays — need to use large crystals

® Harder to detect
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Summary

+ Diffraction amplitude is determined by a product of several
factors: atomic form factor, structural factor

*» Atomic scattering factor (form factor): AKE 3
reflects distribution of electronic cloud. f, = In(r)e 'd°r

In case of spherical distribution sin(Ak-r)
Ak-r
Atomic factor decreases with increasing scattering angle

< Structure factor _ 27 (hu j+kv+w )
F=) fue

f, = ]g4mf2n(r) dr

J
where the summation is over all atoms in unit cell

«» Neutron diffraction — "cold neutrons" - interaction with atomic
nuclei, not electrons

« Electron diffraction — surface characterization technique
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