Phys 446:

Solid State Physics / Optical
Properties
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* Phonons

* Today:
Einstein and Debye models for thermal capacity
Thermal conductivity
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Material to be included in the test
Oct. 12th 2007

® Crystalline structures.
7 crystal systems and 14 Bravais lattices

n
® Crystallographic directions dyy = 5 SN/
and Miller indices £+£+L
a> b

® Definition of reciprocal lattice vectors:

2r 2r 2r
b, =—a,xa,, b,=—a;xa,, b;=—a xa,
R 2 oy :

® What is Brillouin zone

® Bragg formula: 2d-sinf=mk ; Ak=G

® Factors affecting the diffraction amplitude:
Atomic scattering factor (form factor): f = In(r‘)emk'r’d3r
reflects distribution of electronic cloud. “
sin(Ak -7)
Ak-r

In case of spherical distribution

f. = ]Q4ﬂr2n(r) dr

*Structure factor  f — Z fajezm(huj"'kvj"'le)
J

® Elastic stiffness and compliance. Strain and stress: definitions and
relation between them in a linear regime (Hooke's law):

Oy = Z Cin€u & = ZSWO'H
ki kl

*Elastic wave equation: 8°u _ C,y 8°u, sound velocity v = Co
o p ox’ P




¢ Lattice vibrations: acoustic and optical branches
In three-dimensional lattice with s atoms per unit cell there are
3s phonon branches: 3 acoustic, 3s- 3 optical

® Phonon - the quantum of lattice vibration.
Energy Ziw; momentum 7q

® Concept of the phonon density of states
® Einstein and Debye models for lattice heat capacity.

5 1/3
Debye temperature 0 - m-(MAN}
) =—

k |4

B
Low and high temperatures limits of Debye and Einstein models

® Formula for thermal conductivity K= lel
3

® Be able to obtain scattering wave vector or frequency from
geometry and data for incident beam (x-rays, neutrons or light)
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Summary of the Last Lecture

+ Elastic properties — crystal is considered as continuous anisotropic
medium

+ Elastic stiffness and compliance tensors relate the strain and the
stress in a linear region (small displacements, harmonic potential)

Hooke's law: _ _
0, = Z Coutu &= ZSW%
kl kl

+ Elasticwaves 52, C o o’y sound velocity C,
— X v= el
o’ Yo o’ o,

% Model of one-dimensional lattice: linear chain of atoms
+» More than one atom in a unit cell — acoustic and optical branches

<+ All crystal vibrational waves can be described by wave vectors
within the first Brillouin zone in reciprocal space

What do we need? 3D case consideration
Phonons. Density of states

Frequency [THz|

Vibrations in three-dimensional lattice.
Phonons

Phonon Density of states

15%

Specific heat
(Ch. 3.3-3.9)
Az x E - 7 Ls]
a3 hd :tx Ios )
Xy Ezi ? Ly r n

Three-dimensional lattice

In simplest 1D case with only nearest-neighbor interactions we had
equation of motion

-u,)+C(u, ,—u,)

solution
u(x,t) = Ae" ="

In general 3D case the equations of motion are:

2
mZh =
o

n+l

o’u
M, =22 =%Fw
a 2 na
or 3

N unit cells, s atoms in each —
3N’s equations

nth elementary cell
n = (ny,nz, Ng)

Fortunately, have 3D periodicity =
Forces depend only on difference m-n

Write displacements as

Ta=Ny8; + Nz + Nzas

u ‘(q)ei(qTﬂ )
al

u, (x,t)= !
nai > _\/E 0




substitute into equation of motion, get

- um(q) ZZW nr;;@ zq(rmfrn)uﬂ/(q)zo

B.j m

D,ﬁ-’ (q) -dynamical matrix

- a)zuai @+ Zsz] (q)”ﬁj (@)=0
B.j

phonon dispersion
curves in Ge

=~ Det{D?(q)-w’1}=0

- dispersion relation =
3s solutions — dispersion branches
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W,

3 acoustic, 3s-3 optical

direction of u determines polarization
(longitudinal, transverse or mixed)

Can be degenerate because of symmetry

Phonons
* Quantum mechanics: energy levels of the harmonic oscillator are quantized

¢ Similarly the energy levels of lattice vibrations are quantized.

® The quantum of vibration is called a phonon
(in analogy with the photon - the quantum of the electromagnetic wave)

Allowed energy levels of the harmonic oscillator: E= (?? + l/v)ﬁ w

where n is the quantum number

A normal vibration mode of frequency ® is given by | = Ae'(47")

mode is occupied by 7 phonons of energy /®; momentum P = /(

Number of phonons is given by : 1

(T — temperature) nw,T)=—-——
eha}/kT -1

The total vibrational energy of the crystal is the sum of the energies of the
individual phonons:
(p denotes particular E= Z E,= Z(nw, +2)ha,(q)

q qr

phonon branch) 10

Phonon Momentum

+ You might think that these phonons have momentum which
is p = hK, just like photons have momentum p = E/c.

» Be carefull Phonons don'’t carry momentum like photons
due. They can interact with particles like they have a
momentum (for example, a neutron can hit a crystal, and
start a wave by transferring momentum to the lattice).

« However, you have to think of this momentum as being
transferred to the whole lattice. The atoms themselves are
not being translated permanently from their equilibrium
positions.

» The only exception to this rule is the K = 0 mode, where the
whole lattice translates. This, of course, carries momentum.
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Phonon Momentum

« For all practical purposes, a phonon acts as if it carries a
momentum p = K, which is sometimes called the crystal
momentum.

+ We have already seen examples of where this is used.
For example, if an x-ray interacts with a lattice, then we
know that the scattered ray(k’) and incident ray (k) have
to be related by:

K": k’+ G:
+ Where G is a reciprocal lattice vector. In this process,
the whole crystal recoils with momentum -hG 4 2

12




Phonon Momentum

+ If this photon interacts inelastically with the lattice, then

Density of states
Consider 1D longitudinal waves. Atomic displacements are given by:
u=Ae"
Boundary conditions: external constraints applied to the ends

we have: Periodic boundary condition: u(x=0)=ux=1)
K+K=K+G honon i ted ,
slaglec s (phonon iz created) Then ¢l =1 = condition on the admissible values of ¢
2
i OF kT: k.+ K-+ G: (phonon is absorbed) q= Tn where n =0, +1, +2, ..
I Ephonon absorbedI regularly spaced points, spacing 2z/L
G ‘ 8 Number of modes inthe L,
K T~ e ¥ S K interval dg in g-space : 2
e ,// K ‘““-D/’/ q q-sp .
Crystal Crystal Number of modes in the frequency
K phonon created range (o, © + do): D(w)dw = 2—dq
T
D(w) - density of states Dioy=L_ 1
N determined by dispersion o = w(q) 7 doldg 1
Density of states in 3D case
Now have u— Ae' ™ %74 Few notes:
; j - * Equation we obtained is valid only for an isotropic solid,
Periodic boundary condition: et =" = ¢t =1 d y P

27 27 2w

= (qx: q'},q_)(,]T’”?T,”T l’ m, n- integers

w n q£

Plot these values in a g-space, g ol !
obtain a 3D cubic mesh

number of modes in the spherical

shell between the radii ¢ and g + dg:

dg

LY, , Vo
— | 4mg-dg = —4rq dg
2 (27)

V = L? — volume of the sample

)

Vg~ 1
27t do/dg

= Density of states D(®) =

Iz

(vibrational frequency does not depend on the direction of q)

*We have associated a single mode with each value of g.
This is not quite true for the 3D case: for each q there are 3 different
modes, one longitudinal and two transverse.

* In the case of lattice with basis the number of modes is 3s,
where s is the number of non-equivalent atoms.
They have different dispersion relations. This should be taken into
account by index p =1...3s in the density of states.
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Lattice specific heat (heat capacity)

' d ] %
Defined as (per mole) C = a9 If constant volume V' C), = [f]
dT T J,
The total energy of the phonons at temperature T in a crystal:

o <n >ha) -0 (the zero-point energy is chosen as the
z aw » (@ origin of the energy).

ho
<n> = S S Planck distributon Then FE = Z X 10,(@)
T 1 e W -1

replace the summation over g by an integral over frequency:

hao
hao fio/ kT
— | €
kgT

E= ZJ‘CI()D (())Trl
Then the lattice heat capacity is:

C, —(——k ch?’()[) (@) T
17

Central problem is to find the density of states

Debye model

* assumes that the acoustic modes give the dominant contribution
to the heat capacity

* Within the Debye approximation the velocity of sound is taken a
constant independent of polarization (as in a classical elastic
continuum)

The dispersion relation: @ =vg, v is the velocity of sound.

In this approximation the density of states is given by:

Vg 1 V> 1 Vo'

27° dw/dq T2ty 22

Need to know the limits of integration over w. The lower limit is 0.

How about the upper limit ? Assume N unit cells is the crystal, only

one atom in per cell = the total number of phonon modes is 3N =
ap 2.3 Debye

Z j D(w)do=3N = w, :(67[; Nj (67r ny/ frequency

P 0

D(w) =

The cutoff wave vector which corresponds to this frequency is

» ‘6r°N ) modes of wave vector larger than gy, are not
4p = —D = - } allowed - number of modes with g <q,
Voo exhausts the number of degrees of freedom
Then the thermal energy is ﬁ”D Va* he
E = :’J. d(f) 2.3 _holkgT
where is "3" from ? o 2TV e -1
3vh F "’ KT R A
— — B .
- E= ) 2_3 I da holkgT ¢ 2 323 J‘d,\ 5
TV e -1 2zvn oy e -1

where x = hw/k;T and x, = hoy/kgT = 0,/T

5 1/3
Debye temperature: g9 _ hv((gﬂ-i\r}
=
k 14

B
19

The total phonon energy is then E =9Nk T[ ] jd\ ]
e j—

where N is the number of atoms in the crystal and x, = 6,,/T

To find heat capacity, differentiate
3vh F @’
E= 2 2_3 J‘ da her! kgT
TV e -1

SO, A2 ay 4 _holkT 33 *p 4
C. = ?I h i J‘ do w e —= 94\;!(3 [i] J‘ de
1) o, '

fier/ kT
C

In the limit 7>>6,,, x << 1, = C, = 3Nk, - Dulong-Petit law

20




Opposite limit, 7<<@,, : let the upper limit in the integral x, — «©

Get S p 3
3
=9Nk, T e ﬁ_=i4mkaT £
15 v

3 3
E=9Nk,T| - fax—=
6,1 -1 ) 5

x
e D

D

within the Debye model at low
temperatures C, oc T3

19 74 3
= (“V=1“;T NkB[HL}

D

The Debye temperature is
normally determined by
fitting experimental data.

K

o Cu, 343°K
® Ag, 226°K
= Ph, 102°K
x C, 1860°K

Curve C(7/9) is universal
— it is the same for
different substances

C,, cal/g-mol

Einstein model
The density of states is approximated by a J-function at some w :

D(E) = No(w —wg) where N is the total number of atoms —

simple model for optical phonons
3INho,

e}‘r{oE lkgT _ l

~ 2 ,
- fiog 1 kgT
oF ho e
e =3Nk5( a ) .
fiog /
kBT . (em_ ksT —J.)

Then the thermal energy is E =

The heat capacity is then

T

The high temperature limit is the same as that for the Debye model:

C, = 3Nk, - the Dulong-Petit law

At low temperatures C, ~ eI - different from Debye T° law

Reason: at low T acoustic phonons are much more populated 2 the
Debye model is much better approximation that the Einstein model

Real density of vibrational states is much more complicated than those
described by the Debye and Einstein models.

This density of states must be taken into account in order to obtain
quantitative description of experimental data.
g(w)
The density of states for Cu.

The dashed line is the Debye
approximation.

The Einstein approximation
would give a delta peak at
some frequency.

w, 10" rad/s

Summary

+* In three-dimensional lattice with s atoms per unit cell there are
3s phonon branches: 3 acoustic, 3s - 3 optical

+» Phonon - the quantum of lattice vibration.

Energy Ziw; momentum 7q
+» Density of states is important characteristic of lattice vibrations;
It is related to the dispersion o = w(q). v
Simplest case of isotropic solid, for one branch: D(w) = iz
27° dwldq

+«» Heat capacity is related to the density of states.

+» Debye model — good when acoustic phonon contribution dominates.
At low temperatures gives C, o T3

+ Einstein model - simple model for optical phonons (w(gq) is constant)
At high T both models lead to the Dulong-Petit law: C,, = 3Nk,

+ Real density of vibrational states is more complicated 2




Thermal Conductivity

Temperature gradient in a material — heat flow from the hotter to the cooler
end.

Heat current density j (amount of heat flowing across unit area per unit time)
is proportional to the temperature gradient (d77dx):

dT
ju =—K— K - thermal conductivity

dx
® In metals the heat is carried both by electrons and phonons; electron
contribution is much larger
¢ In insulators, there are no mobile electrons = heat is transmitted entirely
by phonons

Heat transfer by phonons

*phonon gas: in every region of space there are phonons traveling randomly in
all directions, much like the molecules in an ordinary gas

*phonon concentration is larger at the hotter end —they move to the cooler end

*the advantage of using this gas model: can apply familiar concepts of tr}?
kinetic theory of gases

Elementary kinetic considerations:

if ¢ is the heat capacity of the single particle, then moving from region
with T+ATto a T, particle will give up energy cAT

AT between the ends of the free path length /.=, 7 _ d—Tl ar

. . . de © dx
where 7 is the average time between collisions

The net energy flux (n — concentration) :
. 2 dT 1 2 dT
Ju = —n<vx >—cz‘ = ——n<v >cr—

3

for phonons, v is constant. nc = C; [=vr

= j, = _lcvld_T -~ K= lel - phonon thermal
3 dx 3 conductivity

26

Dependence of the thermal conductivity on temperature
— C, dependence on temperature has already been discussed

— Sound velocity v essentially insensitive to temperature

— The mean free path [ depends strongly on temperature

Three important mechanisms are to be considered:

(a) collision of a phonon with other phonons

(b) collision of a phonon with imperfections in the crystal

(c) collision of a phonon with the external boundaries of the crystal

The phonon-phonon scattering is due to the anharmonic interaction.
If interatomic forces are purely harmonic — no phonon-phonon interaction.

At high temperature atomic displacements are large = stronger
anharmonism = phonon-phonon collisions become more important

At high T the mean free path [ oc 1/T: number of phonons n oc T at high T

. 27
collision frequency «c n = [ oc 1/n

Suppose that two phonons of vectors q, and q, collide, and produce
a third phonon of vector qs.

Momentum conservation: q; = q, + q,

g; may lie inside the Brillouin zone, or not. If it's inside —
momentum of the system before and after collision is the same.

This is a normal process. It has no effect at all on thermal resistivity,
since it has no effect on the flow of the phonon system as a whole.

Brillouin
one

If q, lies outside the BZ, we reduce it to
equivalent q, inside the first BZ: q; = q, + G ‘

Momentum conservation: q, + q,=q, + G

The difference in momentum is transferred _
to the center of mass of the lattice. |

This type of process is is known as the umklapp bi)_céss-

* highly efficient in changing the momentum of the phonon
* responsible for phonon scattering at high temperatures
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The second mechanism - phonon scattering results from defects.
Impurities and defects scatter phonons because they partially
destroy the periodicity of the crystal.

At very low T, both phonon-phonon and phonon-defect collisions become
ineffective: ' U

200 |-

— there are only a few phonons present,

Anharmonism

So far, lattice vibrations were considered in harmonic
approximation. Some consequences:

Phonons do not interact; no decay

T 10

— the phonons are long-wavelength ones = = K~T°
not effectively scattered by defects, § %[ dueto C, .
which are much smaller in size

in W

In the low-temperature region, the primary
scattering mechanism is the external
boundary of the specimen - so-called

size or geometrical effects.

Thermal conductivity,

high T:
~ 1T
due to /

. . |

/
Becomes effective because the phonon

wavelengths are very long - comparable
to the size of the sample L.

1 2 5 10 20 500 100
Temperature, K

Thermal conductivity of NaF
(highly purified) %

The mean free path hereis / ~ L
= independent of temperature.

No thermal expansion

Elastic constants are independent of pressure and temperature

Heat capacity is constant at high 7' (7>>6,)).

Anharmonic terms in potential energy:

Ulx) = cx? — g’ — fi? x - displacement from equilibrium

separationat T =0

30

Thermal expansion

Calculate average displacement using Boltzmann distribution function:

J’ xe Uk gy

()=

J’ e—U(x)/kBde

If anharmonic terms are small, can use Taylor expansion for exponent

—cx /kE ij 372']
_[ dxe (X"F k T k Tj 74 5/2 (k T)3/2 """"""""""

ox, [kgT 2 _4 2
[ dxees (:j (k,T)?

thermal expansion

Origin of thermal expansion — asymmetric potential

Interatomic potential [”

Interatomic distance /2

Techniques for probing lattice vibrations
® Inelastic X-ray scattering
® Neutron scattering
® Infrared spectroscopy

¢ Brillouin and Raman scattering

Inelastic X-ray scattering

assumed Q(Q) << o,
- true for x-rays:
hQ < 100 meV; ho, ~10* eV
n — index of refraction

k=Kk,tq ho=ha,+hQ(q)

q="2k,sin0=2n2sing
C

measuring ® - ®, and @ sin one can determine dispersion €(q)

main disadvantage — difficult to measure o - ®, accurately

This difficulty can be overcome by use of neutron scattering

Energy of "thermal" neutrons is comparable with hQ (80 meV for &~1A)




Brillouin and Raman spectroscopy
Inelastic light scattering mediated by the electronic polarizability of the medium
¢ a material or a molecule scatters irradiant light from a source

® Most of the scattered light is at the same wavelength as the laser source
(elastic, or Raileigh scattering)

® but a small amount of light is scattered at different wavelengths (inelastic,
or Raman scattering)

hQ I ( Elfals_tich)
hQ - = i Raileig
N ; E ‘2_:2 - Scattering
ho, NA
Anti-
Stokes

Stokes ®; Anti-Stokes

Raman Raman
Scattering Scattering
Raileigh o Q@) o Q(q)

Analysis of scattered light energy, polarization, relative intensit
provides information on lattice vibrations or other excitations

Raman scattering in crystalline solids

Not every crystal lattice vibration can be probed by Raman
scattering. There are certain Selection rules:
1. Energy conservation:

ho, =ho, +hQ;

2. Momentum conservation: 4 K «
k, =k, *q :>0S|q|£2|k|:>0£|q|£77m —»q=0 _=7d
. i ki

1

q= 2k
Ai~5000 A, ag~4-5 A= Aonen >> 4 k. k

= only small wavevector (cloze to BZ center) phonons are seen in
the 15t order (single phonon) Raman spectra of bulk crystals

3. Selection rules determined by crystal symmetry
34

Summary
+“ Phonon thermal conductivity K= ngl

+» Mechanisms of phonon scattering affecting thermal resistivity:
* umklapp processes of phonon-phonons collision — important at
high T
¢ collision of a phonon with defects and impurities in the crystal
* collision of a phonon with the external boundaries of the crystal —
important at low T
+«» Anharmonism of potential energy is responsible for such effects as:
* phonon-phonon interaction
* thermal expansion
+«+ Techniques for probing lattice vibrations:

Inelastic X-ray scattering, Neutron scattering,
Infrared spectroscopy, Brillouin and Raman scattering
Electron energy loss spectroscopy
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SOME USEFUL SLIDES
FROM Physics-I
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Avogadro's number and Ideal Gases

[ PROBLEM SOLYING TACTI

| Tactic 1: Avogadro?s‘ Number of Whai?

|Tn Eq. 20-1, Avegadro's number is expressed in tenms of mold, which is the inverse molz, or Limol We could instead explicitly state
| the elementary unit involved in a given situation. For example, we might write N, =6.02 x 102 atomsfmole if the elementaty unit is

an atom. If, mnstead, the elementary urat 15 a molecule, then we might wnte NA =6.02 x 102 moleculesimole.

Ideal Gases PV = nET  (ideal gas law) R=831Jmol K

R 831JmolK
A “;O _=138x107% K.
N £.02:x10% mol”

o 4

Ideal Gas at Constant Temperature

1 1 )
=nuRkT —=1(a constant)—. '
r - C )V
T=320K

R is a gas constant” Lroaux

T=300K

v

The Kinetic Theory of Gases;
Mole

»One mole 18 the mumber of atoms ih a 12 g sample of cartbon-12

Avogadro's Number
N, =6.02x10® mol™  (Avogadro's number),

ﬂ_ ﬂ= SHIT — St
_J_T'.,Tﬂ A mN

M is molar mass; m is molecular mass
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Pressure, Temperature, and
Speed of molecules

y ART
) Ve = al———

mN, is the molar mass M

—Normal to
< shaded wall

o Root-mean-square speed
7" Some Molecular Speeds at Room Temparature [T= 300 K)
G Melar Mass (107 kgfeacl) Vo (0/5)
Hydrogen (H,) am 1920

40 1370
180 a5
Creygen (0) 380 183
Cirbon dosnde (00,) 480 a2
Slfr dioside (50 61 -

“Fan corvenitncs, ws o, 4t rom ermparstia = 0K svan hough (st 77°C or1°F) that represants sty wam raom

The Distribution of Molecular Speeds

32
2 _-AheT
= Pvy=4x YR hET
3 2ART
) puim
= I} — a = ;
.?: o Vavg p Arca=P v
= y /
= ¥p i
Vrms — =y
0
0 200 400 600 800 1000 1200
) Speed (mfs}
4.0
T =80 K
3.0
‘% 2.0
[==
=300 K
1.0
o 200 400 SO0 |00 1000 1200
3 Speed (m/s)
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View at the molecular theory of an ideal Gas

C,=2R

(a) He

by Oy

C,=Cy+R

Degrees of Freedom for Yarious Molecules

(c) CHy

Iolecule

Degrees of Freedom

Predicted Molar Specific Heats
Ezample Translational Rotational Total () CyEq 20-51) Cp =Cp+&

Ionatomic He
Diatomic O,

Polyatormc CHy

3
3
3

0 3 iR iR
2 4 :
3 [ 3R 4R
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Heat Capacity

Specific Heat

0 =CAT = C(T, - T)

Specific Heats of Some Substances at Room Temperature

O =cmAT =cm(T, - T))

Specific Heat Molar Specific Heat
Substance callgK IkgE Jimol K
Flemental Solids
Lead 0.0305 128 265
Tungsten 0.0321 134 248
Sihver 0.0564 236 255 What is the 1 gram of 1 gram of
Copper 0.0923 336 245  sameandwhat  water at copper at
. is different? 0°C 0°C
Aluminum 0215 900 244 & The same temperature
Other Solids @ implies that the
average malecular
Brass 0.082 380 kinetic energy is
i .
Granite 0.19 790 o [posane
Specific heat
Glass 0.20 340 e 0.092 caligm °C or 386 Jikg"C
Tce (-10%C) 0.530 2220 Why is the
specific heat of Specific heat
Liquids water more than 1 caligm °C or
10 times that of 4186 Jkg°C * More precisely, the translational
Mercury 0.033 140 copper?! kinetic energles are the same. The
Ethyl alcohol 0.58 2430 rotational and vibrational kinetic
energies are neglected in this
_Seawater 0% 200 simplified illustration.
“Water 1.00 4190
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Heat Transfer Mechanisms

« Convection
» Radiation

|_£_|

o .
M Hot reservorr | Cold reservoir
at Ty at T
Some Thermal Conductivities? k
Substance k (WimE) .
Metals
Stainless steel 14 Q
Lead 35
Alnminum 235 1
Copper 401
Silver 428
Gases T, T,
Air (dry) 0.026 E
Helum 0.15
Hydrogen 018 Q: kA(AT/L)T,
Building Materials
Polyurethane form 0.024 M
Rock wool 0043 Wher‘e k ls
Fiberglass 0.048 o« .
ot g on  the thermal conductivity
Window glass 10

“Conductivities change somewhat with termperature. The given values are at room temperature.
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