
Lecture 5 Andrei Sirenko, NJIT 1

Phys 446: 

Solid State Physics / Optical 
Properties

Lattice vibrations: 
Thermal, acoustic, and optical properties

Fall 2007
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Solid State Physics 
Lecture 5 

(Ch. 3)Last week: 

• Phonons

• Today:

Einstein and Debye  models for thermal capacity 

Thermal conductivity

HW2 discussion
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Material to be included in the test
Oct. 12th 2007

• Crystalline structures. 
7 crystal systems and 14 Bravais lattices

• Crystallographic directions 
and Miller indices 

• Definition of reciprocal lattice vectors: 

• What is Brillouin zone

• Bragg formula:   2d·sinθ = mλ ; ∆k = G
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•Factors affecting the diffraction amplitude:

Atomic scattering factor (form factor): 
reflects distribution of electronic cloud.

In case of spherical distribution 

•Structure factor

•Elastic stiffness and compliance. Strain and stress: definitions and  
relation between them in a linear regime (Hooke's law):

•Elastic wave equation: 

rdenf li
a

3)( rkr ⋅∆∫=
( )

∫ ⋅
⋅

=
0

0

2

∆
∆sin)(4

r

a dr
rk

rkrnrf π

∑ ++=
j

lwkvhui
aj

jjjefF )(2π

kl
kl

ijklij C εσ ∑= kl
kl

ijklij S σε ∑=

2

2

2

2

x
uC

t
u xeff

∂
∂

=
∂
∂

ρ
sound velocity

ρ
effC

v =



5

• Lattice vibrations: acoustic and optical branches 
In three-dimensional lattice with s atoms per unit cell there are 
3s phonon branches: 3 acoustic,  3s - 3 optical

• Phonon - the quantum of lattice vibration. 
Energy ħω;  momentum ħq

• Concept of the phonon density of states 

• Einstein and Debye models for lattice heat capacity.

Debye temperature

Low and high temperatures limits of Debye and Einstein models 

• Formula for thermal conductivity 

• Be able to obtain scattering wave vector or frequency from 
geometry and data for incident beam (x-rays, neutrons or light)
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Summary of the Last Lecture 

Elastic properties – crystal is considered as continuous anisotropic 
medium

Elastic stiffness and compliance tensors relate the strain and the 
stress in a linear region (small displacements, harmonic potential)

Hooke's law:

Elastic waves sound velocity

Model of one-dimensional lattice: linear chain of atoms

More than one atom in a unit cell – acoustic and optical branches

All crystal vibrational waves can be described by wave vectors 
within the first Brillouin zone in reciprocal space

What do we need?   3D case consideration
Phonons. Density of states
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Vibrations in three-dimensional lattice. 

Phonons

Phonon Density of states

Specific heat

(Ch. 3.3-3.9)
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Three-dimensional lattice

In general 3D case the equations of motion are: 
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In simplest 1D case with only nearest-neighbor interactions we had
equation of motion  solution
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Fortunately, have 3D periodicity ⇒
Forces depend only on difference m-n
Write displacements as 
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- dispersion relation
3s solutions – dispersion branches

3 acoustic,  3s - 3  optical

direction of u determines polarization
(longitudinal, transverse or mixed)

Can be degenerate because of symmetry

phonon dispersion 
curves in Ge
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Phonons
• Quantum mechanics: energy levels of the harmonic oscillator are quantized

• Similarly the energy levels of lattice vibrations are quantized.

• The quantum of vibration is called a phonon
(in analogy with the photon - the quantum of the electromagnetic wave)

Allowed energy levels of the harmonic oscillator:

where n is the quantum number

A normal vibration mode of frequency ω is given by

mode is occupied by n phonons of energy ħω; momentum p = ħq
Number of phonons is given by :

(T – temperature)

The total vibrational energy of the crystal is the sum of the energies of the 
individual phonons:
(p denotes particular 

phonon branch)
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Density of states
Consider 1D longitudinal waves. Atomic displacements are given by: 

iqxAeu =
Boundary conditions: external constraints applied to the ends

Periodic boundary condition: 

1=iqLeThen ⇒ condition on the admissible values of q:
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regularly spaced points,  spacing 2π/L
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Number of modes in the 
interval dq in q-space :

dqL
π2

Number of modes in the frequency 
range (ω, ω + dω): 

D(ω) - density of states
determined by dispersion ω = ω(q)
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Density of states in 3D case

Now have

Periodic boundary condition: 1=== LiqLiqLiq zyx eee

⇒ l, m, n - integers

Plot these values in a q-space, 
obtain a 3D cubic mesh

number of modes in the spherical 
shell between the radii q and q + dq: 

V = L3 – volume of the sample

⇒ Density of states 16

Few notes:
•Equation we obtained is valid only for an isotropic solid, 

(vibrational frequency does not depend on the direction of q) 

•We have associated a single mode with each value of q.
This is not quite true for the 3D case: for each q there are 3 different 
modes, one longitudinal and two transverse. 

• In the case of lattice with basis the number of modes is 3s, 
where s is the number of non-equivalent atoms. 
They have different dispersion relations. This should be taken into 
account by index p =1…3s in the density of states.
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Lattice specific heat  (heat capacity)

dT
dQC =Defined as (per mole) If constant volume V
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The total energy of the phonons at temperature T in a crystal: 

(the zero-point energy is chosen as the 
origin of the energy). 

1
1
−
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n ω

- Planck distribution Then 

replace the summation over q by an integral over frequency:

Then the lattice heat capacity is:

Central problem is to find the density of states
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Debye model

•assumes that the acoustic modes give the dominant contribution 
to the heat capacity 

•Within the Debye approximation the velocity of sound is taken a 
constant independent of polarization (as in a classical elastic 
continuum) 

The dispersion relation:   ω = vq,    v is the velocity of sound. 

In this approximation the density of states is given by: 
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Need to know the limits of integration over ω. The lower limit is 0.
How about the upper limit ?  Assume N unit cells is the crystal, only 
one atom in per cell ⇒ the total number of phonon modes is 3N ⇒
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Debye 
frequency
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The cutoff wave vector which corresponds to this frequency is 

modes of wave vector larger than qD are not 
allowed - number of modes with q ≤qD
exhausts the number of degrees of freedom

Then the thermal energy is

where is "3" from ? 

→

where x ≡ ħω/kBT and   xD ≡ ħωD/kBT ≡ θD/T

Debye temperature:
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The total phonon energy is then 

where N is the number of atoms in the crystal and xD ≡ θD/T

To find heat capacity, differentiate 

So, 

In the limit T >>θD,  x << 1, ⇒ Cv = 3NkB - Dulong-Petit law
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Opposite limit, T <<θD :  let the upper limit in the integral xD → ∞

Get 

⇒ within the Debye model at low 
temperatures  Cv ∝ T3

The Debye temperature is 
normally determined by 
fitting experimental data. 

Curve Cv(T/θ) is universal 
– it is the same for 
different substances 
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Einstein model
The density of states is approximated by a δ-function at some ωE :  

D(E) = Nδ(ω – ωE)    where N is the total number of atoms –

simple model for optical phonons 

Then the thermal energy is

The high temperature limit is the same as that for the Debye model:

Cv = 3NkB - the Dulong-Petit law

At low temperatures  Cv ~ e-ħω/kBT - different from Debye T3 law 

Reason: at low T  acoustic phonons are much more populated ⇒ the 
Debye model is much better approximation that the Einstein model

The heat capacity is then
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Real density of vibrational states is much more complicated than those 
described by the Debye and Einstein models. 

This density of states must be taken into account in order to obtain 
quantitative description of experimental data.

The density of states for Cu.

The dashed line is the Debye 
approximation. 

The Einstein approximation 
would give a delta peak at 
some frequency.
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Summary  
In three-dimensional lattice with s atoms per unit cell there are 
3s phonon branches: 3 acoustic,  3s - 3  optical

Phonon - the quantum of lattice vibration. 
Energy ħω;  momentum ħq

Density of states is important characteristic of lattice vibrations; 
It is related to the dispersion ω = ω(q).  
Simplest case of isotropic solid, for one branch: 

Heat capacity is related to the density of states. 

Debye model – good when acoustic phonon contribution dominates.
At low temperatures gives Cv ∝ T3

Einstein model - simple model for optical phonons (ω(q) is constant)

At high T both models lead to the Dulong-Petit law: Cv = 3NkB

Real density of vibrational states is more complicated
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Thermal Conductivity
Temperature gradient in a material → heat flow from the hotter to the cooler 
end. 
Heat current density j (amount of heat flowing across unit area per unit time) 
is proportional to the temperature gradient (dT/dx):

dx
dTKju −= K - thermal conductivity

• In metals the heat is carried both by electrons and phonons; electron 
contribution is much larger

• In insulators, there are no mobile electrons ⇒ heat is transmitted entirely 
by phonons  

Heat transfer by phonons
•phonon gas: in every region of space there are phonons traveling randomly in 
all directions, much like the molecules in an ordinary gas

•phonon concentration is larger at the hotter end →they move to the cooler end

•the advantage of using this gas model: can apply familiar concepts of the 
kinetic theory of gases
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Elementary kinetic considerations: 

if c is the heat capacity of the single particle, then moving from region 
with T+∆T to a T,   particle will give up energy c∆T

∆T between the ends of the free path length lx :

where τ is the average time between collisions

The net energy flux (n – concentration) :  

τxx v
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Dependence of the thermal conductivity on temperature
– Cv dependence on temperature has already been discussed

– Sound velocity v essentially insensitive to temperature

– The mean free path l depends strongly on temperature

Three important mechanisms are to be considered: 

(a) collision of a phonon with other phonons 

(b) collision of a phonon with imperfections in the crystal

(c) collision of a phonon with the external boundaries of the crystal

The phonon-phonon scattering is due to the anharmonic interaction. 
If interatomic forces are purely harmonic – no phonon-phonon interaction. 

At high temperature atomic displacements are large ⇒ stronger 
anharmonism ⇒ phonon-phonon collisions become more important

At high T the mean free path l ∝ 1/T :  number of phonons n ∝ T at high T 

collision frequency ∝ n ⇒ l ∝ 1/n 28

Suppose that two phonons of vectors q1 and q2 collide, and produce 
a third phonon of vector q3. 

Momentum conservation: q3 = q1 + q2

q3 may lie inside the Brillouin zone, or not.  If it's inside →
momentum of the system before and after collision is the same.

This is a normal process. It has no effect at all on thermal resistivity, 
since it has no effect on the flow of the phonon system as a whole.

If q3 lies outside the BZ, we reduce it to 
equivalent q4 inside the first BZ: q3 = q4 + G
Momentum conservation: q1 + q2 = q4 + G
The difference in momentum is transferred 
to the center of mass of the lattice. 
This type of process is is known as the umklapp process

•highly efficient in changing the momentum of the phonon
• responsible for phonon scattering at high temperatures
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The second  mechanism - phonon scattering results from defects. 
Impurities and defects scatter phonons because they partially 
destroy the periodicity of the crystal. 

At very low T, both phonon-phonon and phonon-defect collisions become 
ineffective: 

– there are only a few phonons present, 
– the phonons are long-wavelength ones ⇒

not effectively scattered by defects, 
which are much smaller in size

In the low-temperature region, the primary 
scattering mechanism is the external 
boundary of the specimen - so-called 
size or geometrical effects.

Becomes effective because the phonon 
wavelengths are very long - comparable 
to the size of the sample L. 

The mean free path here is l ~ L
⇒ independent of temperature. Thermal conductivity of NaF

(highly purified)

low T:
K ~ T3

due to Cv

high T:
K ~ 1/T
due to l
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Anharmonism

So far, lattice vibrations were considered in harmonic 
approximation. Some consequences: 

– Phonons do not interact; no decay 

– No thermal expansion

– Elastic constants are independent of pressure and temperature

– Heat capacity is constant at high T (T>>θD).

Anharmonic terms in potential energy: 

U(x) = cx2 – gx3 – fx4 x - displacement from equilibrium 
separation at T = 0
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Calculate average displacement using Boltzmann distribution function:
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Thermal expansion

thermal expansion

Origin of thermal expansion – asymmetric potential
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• Inelastic X-ray scattering 

• Neutron scattering

• Infrared spectroscopy

• Brillouin and Raman scattering

Techniques for probing lattice vibrations

θ
k0

k
q )(0 qΩ±= ωωqkk ±= 0

Inelastic X-ray scattering

θωθ sin2sin2 0
0 c

nkq ==

assumed  Ω(q) << ω0
- true for x-rays: 

ħΩ < 100 meV; ħω0 ~104 eV
n – index of refraction

measuring ω - ω0 and θ sin one can determine dispersion Ω(q)
main disadvantage – difficult to measure ω - ω0 accurately
This difficulty can be overcome by use of neutron scattering
Energy of "thermal" neutrons is comparable with ħΩ (80 meV for λ≈1Å)
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Brillouin and Raman spectroscopy 

•a material or a molecule scatters irradiant light from a source 
•Most of the scattered light is at the same wavelength as the laser source 

(elastic, or Raileigh scattering) 
• but a small amount of light is scattered at different wavelengths   (inelastic, 

or Raman scattering) 

Stokes 
Raman 

Scattering
ωi- Ω(q)

Anti-Stokes 
Raman 
Scattering
ωi+ Ω(q)

ωi

Elastic 
(Raileigh) 
Scattering

ω

I

0
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ћωi
ћωs
Stokes

0

α
β

ћΩ

ћωi

Raileigh

ћωs
Anti-
Stokes

Analysis of scattered light energy, polarization, relative intensity 
provides information on lattice vibrations or other excitations

Inelastic Inelastic light scatteringscattering mediated by the electronic polarizabilitypolarizability of the medium
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Not every crystal lattice vibration can be probed by Raman 
scattering. There are certain Selection rules:

1. Energy conservation:

2. Momentum conservation:

λi ~ 5000 Å,  a0 ~ 4-5 Å ⇒ λphonon >> a0

⇒ only small wavevector (cloze to BZ center) phonons are seen in 
the 1st order (single phonon) Raman spectra of bulk crystals

3. Selection rules determined by crystal symmetry

Raman scattering in crystalline solids 
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Summary 
Phonon thermal conductivity 

Mechanisms of phonon scattering affecting thermal resistivity:
• umklapp processes of phonon-phonons collision – important at 

high T
• collision of a phonon with defects and impurities in the crystal
• collision of a phonon with the external boundaries of the crystal –

important at low T 

Anharmonism of potential energy is responsible for such effects as: 
• phonon-phonon interaction
• thermal expansion

Techniques for probing lattice vibrations: 
Inelastic X-ray scattering, Neutron scattering, 
Infrared spectroscopy, Brillouin and Raman scattering
Electron energy loss spectroscopy
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SOME USEFUL SLIDES
FROM Physics-I
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Avogadro’s number and Ideal Gases

Ideal Gases

Ideal Gas at Constant Temperature

R is a gas constant”
38

The Kinetic Theory of Gases; 
Mole

Avogadro's Number

M is molar mass;     m is molecular mass
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Pressure, Temperature, and 
Speed of molecules

Root-mean-square speed

mNA is the molar mass M
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The Distribution of Molecular Speeds
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View at the molecular theory of an ideal Gas 
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Heat Capacity

Specific Heat 

43

Heat Transfer Mechanisms
• Convection 
• Radiation
• Conduction

Q=kA(∆T/L)t,
Where k is 
the thermal conductivity


