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Solid State Physics 
Lecture 6 

(Ch. 3)Last week: 

• Phonons, Einstein and Debye  models, QZ1 results

• Today:

Optical Properties, Raman scattering, Thermal conductivity

Introduction to metals (Ch. 4)
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Thermal Conductivity
Temperature gradient in a material → heat flow from the hotter to the cooler 
end. 
Heat current density j (amount of heat flowing across unit area per unit time) 
is proportional to the temperature gradient (dT/dx):

dx
dTKju −= K - thermal conductivity

• In metals the heat is carried both by electrons and phonons; electron 
contribution is much larger

• In insulators, there are no mobile electrons ⇒ heat is transmitted entirely 
by phonons  

Heat transfer by phonons
•phonon gas: in every region of space there are phonons traveling randomly in 
all directions, much like the molecules in an ordinary gas

•phonon concentration is larger at the hotter end →they move to the cooler end

•the advantage of using this gas model: can apply familiar concepts of the 
kinetic theory of gases
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Elementary kinetic considerations: 

if c is the heat capacity of the single particle, then moving from region 
with T+∆T to a T,   particle will give up energy c∆T

∆T between the ends of the free path length lx :

where τ is the average time between collisions

The net energy flux (n – concentration) :  

τxx v
dx
dTl

dx
dTT ==∆

dx
dTcvnc

dx
dTvnj xu ττ 22

3
1

−=−=

for phonons, v is constant. nc = C;  l=vτ

dx
dTCvlju 3

1
−=⇒ CvlK

3
1

=⇒
- phonon thermal 

conductivity
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Dependence of the thermal conductivity on temperature
– Cv dependence on temperature has already been discussed

– Sound velocity v essentially insensitive to temperature

– The mean free path l depends strongly on temperature

Three important mechanisms are to be considered: 

(a) collision of a phonon with other phonons 

(b) collision of a phonon with imperfections in the crystal

(c) collision of a phonon with the external boundaries of the crystal

The phonon-phonon scattering is due to the anharmonic interaction. 
If interatomic forces are purely harmonic – no phonon-phonon interaction. 

At high temperature atomic displacements are large ⇒ stronger 
anharmonism ⇒ phonon-phonon collisions become more important

At high T the mean free path l ∝ 1/T :  number of phonons n ∝ T at high T 

collision frequency ∝ n ⇒ l ∝ 1/n 6

Suppose that two phonons of vectors q1 and q2 collide, and produce 
a third phonon of vector q3. 

Momentum conservation: q3 = q1 + q2

q3 may lie inside the Brillouin zone, or not.  If it's inside →
momentum of the system before and after collision is the same.

This is a normal process. It has no effect at all on thermal resistivity, 
since it has no effect on the flow of the phonon system as a whole.

If q3 lies outside the BZ, we reduce it to 
equivalent q4 inside the first BZ: q3 = q4 + G
Momentum conservation: q1 + q2 = q4 + G
The difference in momentum is transferred 
to the center of mass of the lattice. 
This type of process is is known as the umklapp process

•highly efficient in changing the momentum of the phonon
• responsible for phonon scattering at high temperatures
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The second  mechanism - phonon scattering results from defects. 
Impurities and defects scatter phonons because they partially 
destroy the periodicity of the crystal. 

At very low T, both phonon-phonon and phonon-defect collisions become 
ineffective: 

– there are only a few phonons present, 
– the phonons are long-wavelength ones ⇒

not effectively scattered by defects, 
which are much smaller in size

In the low-temperature region, the primary 
scattering mechanism is the external 
boundary of the specimen - so-called 
size or geometrical effects.

Becomes effective because the phonon 
wavelengths are very long - comparable 
to the size of the sample L. 

The mean free path here is l ~ L
⇒ independent of temperature. Thermal conductivity of NaF

(highly purified)

low T:
K ~ T3

due to Cv

high T:
K ~ 1/T
due to l
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Anharmonism
So far, lattice vibrations were considered in harmonic 

approximation. Some consequences: 

– Phonons do not interact; no decay 

– No thermal expansion

– Elastic constants are independent of pressure and temperature

– Heat capacity is constant at high T (T>>θD).

Anharmonic terms in potential energy: 

U(x) = cx2 – gx3 – fx4 x - displacement from equilibrium 
separation at T = 0
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Calculate average displacement using Boltzmann distribution function:
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Origin of thermal expansion – asymmetric potential
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Thermal expansion from Phys 103
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• Inelastic X-ray scattering 

• Neutron scattering

• Infrared spectroscopy

• Brillouin and Raman scattering

Techniques for probing lattice vibrations

θ
k0

k
q )(0 qΩ±= ωωqkk ±= 0

Inelastic X-ray scattering

θωθ sin2sin2 0
0 c

nkq ==

assumed  Ω(q) << ω0
- true for x-rays: 

ħΩ < 100 meV; ħω0 ~104 eV
n – index of refraction

measuring ω - ω0 and θ sin one can determine dispersion Ω(q)
main disadvantage – difficult to measure ω - ω0 accurately
This difficulty can be overcome by use of neutron scattering
Energy of "thermal" neutrons is comparable with ħΩ (80 meV for λ≈1Å) 12

• Inelastic X-ray scattering in GaN
Techniques for probing lattice vibrations

θ
k0

k
q )(0 qΩ±= ωωqkk ±= 0

θωθ sin2sin2 0
0 c

nkq ==
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Brillouin and Raman spectroscopy 

•a material or a molecule scatters irradiant light from a source 
•Most of the scattered light is at the same wavelength as the laser source 

(elastic, or Raileigh scattering) 
• but a small amount of light is scattered at different wavelengths   (inelastic, 

or Raman scattering) 

Stokes 
Raman 

Scattering
ωi- Ω(q)

Anti-Stokes 
Raman 
Scattering
ωi+ Ω(q)

ωi

Elastic 
(Raileigh) 
Scattering

ω

I

0

α
β

ћΩ

ћωi
ћωs
Stokes

0

α
β

ћΩ

ћωi

Raileigh

ћωs
Anti-
Stokes

Analysis of scattered light energy, polarization, relative intensity 
provides information on lattice vibrations or other excitations

Inelastic Inelastic light scatteringscattering mediated by the electronic polarizabilitypolarizability of the medium
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Not every crystal lattice vibration can be probed by Raman 
scattering. There are certain Selection rules:

1. Energy conservation:

2. Momentum conservation:

λi ~ 5000 Å,  a0 ~ 4-5 Å ⇒ λphonon >> a0

⇒ only small wavevector (cloze to BZ center) phonons are seen in 
the 1st order (single phonon) Raman spectra of bulk crystals

3. Selection rules determined by crystal symmetry

Raman scattering in crystalline solids 

;Ω±= si ωω

kq 20 ≤≤qkk ±= si ⇒
i

nq
λ
π40 ≤≤⇒ q

ki

ks q ≈ 0
ks

ki

ks ki

q ≈ 2k

15

Raman scattering in crystalline solids 

| |i sq k k k= ±∆ = ± −

Phonon wavevector
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Mandelstam-Brillouin
scattering

Raman
scattering
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Raman scattering in crystalline solids 

Raman
scattering
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Example of Raman scattering in crystalline solids 

3 15 modes
3 acoustic modes
12 optical modes; 3 4

S =

×

1 1

2 2

3 3

4 4

2
2
2
2

TO LO
TO LO
TO LO
TO LO

× +
× +
× +
× +
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Summary 
Phonon thermal conductivity 

Mechanisms of phonon scattering affecting thermal resistivity:
• umklapp processes of phonon-phonons collision – important at 

high T
• collision of a phonon with defects and impurities in the crystal
• collision of a phonon with the external boundaries of the crystal –

important at low T 

Anharmonism of potential energy is responsible for such effects as: 
• phonon-phonon interaction
• thermal expansion

Techniques for probing lattice vibrations: 
Inelastic X-ray scattering, Neutron scattering, 
Infrared spectroscopy, Brillouin and Raman scattering
Electron energy loss spectroscopy

CvlK
3
1

=
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Optical Properties of Solids

Dielectric function formalism

Phonon contribution to Dielectric function and

Light interaction with Phonons

(in this Lecture  K  is a wavevector of light)
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The interaction of radiation with matter

Materials equations

EM wave

ˆ( )

( )

D E
j E

ε ω

σ ω

=

=

22

For your references:
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The interaction of radiation with matter

Plane EM wave (light)
Solution:

Decoupled form of MaxEq. 
in vacuum: 

Same in material medium
(solid state)  [SI] 

2
2

2

H HH
t t

εµ σµ∂ ∂
∇ = +

∂ ∂

2
2

2

E EE
t t

εµ σµ∂ ∂
∇ = +

∂ ∂

[CGS] 
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The interaction of radiation with matter

EM wave (light)

Loss part of K-vector

K-vector of light:

If K is real
(no losses)

0
2K

c
π ω
λ

= =

2
2

2

E EE
t t

εµ σµ∂ ∂
∇ = +

∂ ∂

2 2 2
0 0

0 0 0 0

K i iµε µσµεω ωµσ µ ε ω
µ ε µ ε ω

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠

2
2 2

0 0 0 2K
c
ωµ ε ω= =

for nonmagnetic media:  µ = µ0 0 0
0 0

K K i nKε σ
ε ε ω

= + =

complex refractive index:

α - absorption coefficient (m-1);         and
αz

2
0 0E E e−= α( )z

0( )I z I e ω−=

0 0 0

( )
2R I Rn i n in n i

K
ε σ α ω
ε ε ω

= + = + = +
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The interaction of radiation with matter
Complex Dielectric Function

2 2
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n n
n n

E z t E e iKz E e izK i
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ω ω

σε ω ε ε ε
ω

ω

ε
ε
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= + = + ⋅

= + ⋅

= −

= ⋅ ⋅
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⎣ ⎦
>> ≈

Light along z-axis:
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Linear spectroscopy 

2 2 2

2 2

(1 )1
1 (1 )

R I
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n nnR
n n n

− +−
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+ + +
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Linear spectroscopy of semiconductors and 
dielectrics 

“Metal”

“phonon”

“electronic 
transitions”
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Electric field and Displacement vector in a material medium

0( , ) exp[ ( )]
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In general situation:
      0    0
    0      0

    0     0   

xx xy xz xx

yx yy yz yy

zx zy zz zz

ε ε ε ε
ε ε ε ε ε

ε ε ε ε

⎡ ⎤ ⎡ ⎤
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6 independent 
components

In isotropic media:
      0    0
    0      0

0     0       

xx xy xz

yx yy yz

zx zy zz

ε ε ε ε
ε ε ε ε ε ε

εε ε ε

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

In crystals  the number of independent 
components decreases according to 
the symmetry
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Ionic polarizability / Phonon contribution 
Evaluate the dielectric constant of an ionic crystal. 

Ionic polarizability is related to the motion of ions. 

Recall the linear chain model we used to describe lattice vibrations:

+ -Equations of motion 
in the presence of 
external field:

( ) EeuuuC
dt

udM nnn
n *2 112

2

1 −−−−= −+

( ) EeuuuC
dt
udM nnn

n *2 212
1

2

2 +−−−= ++
+

e* - effective charge,

E – external field; 

( )tqxieEE ω−= 0assume 

also assume long wavelength, λ >> a0 → q ≈ 0 ⇒
ti

n euu ω−
−= 0

ti
n euu ω−

++ = 01
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Substitute this solution into equations of motion, solve for u0+ , u0-

Get
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where - transverse optical phonon frequency 
at q = 0⎟⎟
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The ionic polarization Pi is then

(nm – number of dipoles per unit volume); P = ε0χE

)(* 00 −+ −= uuenP mi

relative permittivity: εr = ε/ε0 = 1+χ ; χ = χel + χi
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−
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At high frequencies, ω >> ωt , the ionic term vanishes:

at ω = 0,  

elr χε +=∞ 1

2

0 2
0

*1 m
r el

R t

n e
M

ε χ
ε ω

= + +

2
0

2 2 2 2 2
0

*( ) 1
(1 ) 1
m r r

r el r
R t t t

n e
M

ε εε ω χ ε
ε ω ω ω ω ω

∞
∞

−
= + + = +

− −

can rewrite

Note that εr(ωt)→∞.   Also, εr(ω) = 0 at 0r
l t

r

εω ω
ε ∞

= ⋅

Between ωt and ωl εr(ω) < 0 ⇒ index of refraction is imaginary: 

( ) ( )rN i kω ε ω= = ⋅ wave is reflected
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Physical meaning of ωl - the frequency of longitudinal optical phonon

k k

TO phonons: 

no field in z direction; 
from the symmetry of the 
problem: 

( ) 0=⋅∇=⋅∇ ED ε

0   0 =⋅∇⇒=
∂
∂ E

x
Ex

LO phonons:  

macroscopic field along z :
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∂

ωε

D
z
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Lyddane-Sachs-Teller relation 
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If phonon decay is included: 
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Lyddane-Sachs-Teller relation 

A.A. Sirenko, et al., Nature 404, 373 (2000) 
A.A. Sirenko, et al., Phys. Rev. Lett. 84, 4625 (2000) and Phys. Rev. Lett. 82, 44500 (1999) 

Raman Ellipsometry
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Electronic polarizability of solids
(similar to electronic transitions in atoms )

For an accurate quantitative description, quantum mechanics is needed

But we can get some general ideas with classical approach

Recall our model of atom:

Displaced electronic cloud feels a restoring 
force, which is linear (for small displacements) -

+
∆r p

E

For simplicity consider one-dimensional case (∆r parallel to x) 

e
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Without an external field: 

Equation for harmonic oscillator. Solution: harmonic  vibration

with frequency 

Now, have electromagnetic wave with field   E(t)=E0e-iωt

Force F(t)=eE0e-iωt

Equation of motion becomes
(forced oscillator)

Look for a solution   x(t)=x0e-iωt

get
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Expect strong response (large x), ⇒ large susceptibility χ ⇒
large refractive index n at   ω ≈ ω0
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Dipole moment  p = qx, so polarization P = eNZx
(N atoms per unit volume, Z electrons per atom)  ⇒
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Now, consider damping force proportional to speed : 

dt
dxmFdamp γ−=

2

2
2
0 dt

xdm
dt
dxmxmeeE ti

o =−−− γωω

Equation of motion becomes  (damped oscillator):

Again, look for a solution   x(t)=x0e-iωt

get
ωγωω i

tE
m
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Same form as before,
just includes damping  

Therefore
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n is complex for nonzero damping:

Amplitude decays as wave propagates – absorption; 
results from damping

IR innn +=~

and                      ,                           - complex wavenumber 

What does it mean?

0K nK=

0 0 0[ ] ( )( )
0 0 0

R I I Ri n in K x i t n K x i n K x ti Kx tE E e E e E e eω ωω + − − −−= = =
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0

Ri n K x tE E e ω−=or where 0
0 0

In K xE E e−=
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α - absorption coefficient (m-1)



41

22

22
2

)1(
)1(*

IR

IR

nn
nnrrrR

++

+−
===

Reflectivity at normal incidence (in air) 
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As we've seen, the dielectric function and refractive index 

are generally complex: εr = εr' + iεr'' 

εr' = nR
2 - nI

2 ; εr'' = 2nRnI

nI is called extinction coefficient

IR innn +=~

Field amplitude: power (intensity):

42

We obtained

Quantum mechanics 
gives similar result for 
Electronic polarizability:

Many resonant frequencies ωj correspond to energy transitions

Weighting factors fj called oscillator strengths

(related to transition matrix elements)
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Optical properties of conductive solids (metals)

conductivity of a medium σ :

Including conductivity in Maxwell's equations in the medium: 

t∂
∂

+=×∇
EJB µεµ

EJ σ=

leads to wave equation: 

Still, look for plane wave solution: ( ) ( )
0, i K r tt e ω⋅ −=E r E

Differs from a "standard" wave equation by the first term in the right part

2
2

2

E EE
t t

εµ σµ∂ ∂
∇ = +

∂ ∂
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visibleUV infrared

Have complex refractive index nt:

nR, nI = α/2K0 are real

1 2

0 0 02In i n i
K

ε σ α
ε ε ω

⎛ ⎞
= + = +⎜ ⎟
⎝ ⎠

Reflection from metals

Consider a very good metal: large σ
(e.g. silver: σ ≈ 6·107 Ω-1m-1)

For

then 
0

1
2 I Rn n

K
α

= >> −

⇒ R → 1

Reflectivity at normal incidence (in air) 
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Dispersion equation in metals
The dispersion we got in a model of oscillating electrons: 

emk=0ω

k – "spring constant"
me – electron mass

in metal, there are free electrons – no restoring force ⇒ ω0 = 0

Still, there may be bound electrons, too. 

So

2
2

2 2
0 0

1( ) 1 FCN en
m i

ω
ε ω ω ωγ

⎛ ⎞
= + ⎜ ⎟− +⎝ ⎠

2
2

2 2 2
0 0

1( ) 1 jFC

je j j

fN en
m i i

ω
ε ω ωγ ω ω ωγ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟− + − +⎝ ⎠

∑

free electrons bound electrons 
(like in dielectric)
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Then 
2

2
2

0

( ) 1 FCN en
m

ω
ε ω

= −

Introduce  
2

FC
p

core e

N e
m

ω
ε

=
- plasma frequency

Then 
2

2
2 1)(

ω
ω

ω pn −=

Below ωp refractive index is complex – absorption;

above ωp n is real, free electron absorption is small

For most metals ωp lies in the UV range  

If we neglect the contribution of bound electrons and also neglect 
free electron damping γe

2

2'( ) 1 p
core

ω
ε ω ε

ω
⎡ ⎤

= ⋅ −⎢ ⎥
⎢ ⎥⎣ ⎦

( )coreε ε ω= →∞
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Where carrier 
concentration 
is higher? 
Choose between a
and b. Show work

a

b
2

FC
p

core e

N e
m

ω
ε

=
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Summary 

Ionic contribution to dielectric function is related to lattice vibrations 
and exhibits dispersion in infrared region, given by 
the Lyddane-Sachs-Teller relation:

Electronic polarizability is given by

Dielectric function and refractive index are generally complex: 
εr = εr' + iεr'' ; ; εr' = nR

2 - nI
2 ; εr'' = 2nRnI

absorption coefficient α = 2K0nI nI - extinction coefficient

∏ −
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