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Solid State Physics / Optical
Properties

Lattice vibrations:
optical properties and Raman scattering
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Lecture 6 Andrei Sirenko, NJIT 1

Solid State Physics

) Lecture 6
Last week: (Ch. 3)

* Phonons, Einstein and Debye models, QZ1 results

* Today:

Optical Properties, Raman scattering, Thermal conductivity

Some Thermal Conductivities”

Introduction to metals (Ch. 4) Sebrace * (k)
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oesdoctivities change somewhat with tenpershare. The given vaboes are o1 room tempersture.

Thermal Conductivity

Temperature gradient in a material — heat flow from the hotter to the cooler

end.
Heat current density j (amount of heat flowing across unit area per unit time)

is proportional to the temperature gradient (d77dx):
dT -
J,=—K— K - thermal conductivity
dx
®In metals the heat is carried both by electrons and phonons; electron
contribution is much larger

® |n insulators, there are no mobile electrons = heat is transmitted entirely
by phonons
Heat transfer by phonons
*phonon gas: in every region of space there are phonons traveling randomly in
all directions, much like the molecules in an ordinary gas

*phonon concentration is larger at the hotter end —they move to the cooler end

*the advantage of using this gas model: can apply familiar concepts of th§
kinetic theory of gases

Elementary kinetic considerations:

if ¢ is the heat capacity of the single particle, then moving from region
with T+ATto a 7, particle will give up energy cAT

AT between the ends of the free path length /,: 1 _ d—Tlx :d—Tvxr
where 7 is the average time between collisions dx dx

The net energy flux (n — concentration) :
. \dT 1 ,,\ dT
Ju = —n<vx >—CT = ——n<v >cr—

3

for phonons, v is constant. nc = C; [=vr

= ju=—lCVld—T = K=1Cvl
3 dx 3

- phonon thermal
conductivity




Dependence of the thermal conductivity on temperature
— C, dependence on temperature has already been discussed

— Sound velocity v essentially insensitive to temperature

— The mean free path / depends strongly on temperature

Three important mechanisms are to be considered:

(a) collision of a phonon with other phonons

(b) collision of a phonon with imperfections in the crystal

(c) collision of a phonon with the external boundaries of the crystal

The phonon-phonon scattering is due to the anharmonic interaction.
If interatomic forces are purely harmonic — no phonon-phonon interaction.

At high temperature atomic displacements are large = stronger
anharmonism = phonon-phonon collisions become more important

At high T the mean free path [ oc 1/T: number of phonons n oc T at high T

.. 5
collision frequency « n = locl/n

Suppose that two phonons of vectors q, and q, collide, and produce
a third phonon of vector qs.

Momentum conservation: q; = q; + q,

g; may lie inside the Brillouin zone, or not. If it's inside —
momentum of the system before and after collision is the same.

This is a normal process. It has no effect at all on thermal resistivity,
since it has no effect on the flow of the phonon system as a whole.

Brillouin
one

If g, lies outside the BZ, we reduce it to _
equivalent q, inside the first BZ: q; = q, + G ‘

Momentum conservation: q, + q,=q, + G

The difference in momentum is transferred
to the center of mass of the lattice.

This type of process is is known as the umklapp iorocéss

¢ highly efficient in changing the momentum of the phonon
* responsible for phonon scattering at high temperatures ¢

The second mechanism - phonon scattering results from defects.
Impurities and defects scatter phonons because they partially
destroy the periodicity of the crystal.

At very low T, both phonon-phonon and phonon-defect collisions become
ineffective: ' U '

200 |-

— there are only a few phonons present,

— ol lowT: -
— the phonons are long-wavelength ones = * K~T8
not effectively scattered by defects, § %[ dueto C, 1
which are much smaller in size A
In the low-temperature region, the primary £ *

scattering mechanism is the external
boundary of the specimen - so-called
size or geometrical effects.

Thermal conductivity,

high T:
Becomes effective because the phonon K~1T
wavelengths are very long - comparable due to /
to the size of the sample L. T —

1 2 5 0 0 500 100
Temperature, K
Thermal conductivity of NaF
(highly purified) ’
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The mean free path hereis /~ L
= independent of temperature.

Anharmonism

So far, lattice vibrations were considered in harmonic
approximation. Some consequences:

Phonons do not interact; no decay

No thermal expansion

Elastic constants are independent of pressure and temperature

Heat capacity is constant at high 7' (7>>6,,).

Anharmonic terms in potential energy:

Ulx) = cx? — g’ — fi* x - displacement from equilibrium
separationat T =0

Interatomic potential [”

Interatomic distance /2




Thermal expansion

Calculate average displacement using Boltzmann distribution function:
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If anharmonic terms are small, can use Taylor expansion for exponent

4 5
J' dxe—cxz/kBT x+&+fi 37[1/2i(k T)3/2
e kyT kT ) PV

[ et (]

(x)

thermal expansion

equilibrium
position
Ry

Origin of thermal expansion — asymmetric potential

Interatomic potential |”

\ banding energy

Interatomic distance /2

Thermal expansion from Phys 103
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Linear expansion Area expansion Volume expansion
ﬂ'_L :a&T ﬁ_A =20‘:ﬁT ‘A_V =30AT
LU 0 0
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(e

Techniques for probing lattice vibrations
® Inelastic X-ray scattering

® Neutron scattering
® Infrared spectroscopy

® Brillouin and Raman scattering

Inelastic X-ray scattering

assumed Q(Q) << o,
- true for x-rays:
hQ < 100 meV; ho, ~10* eV
n — index of refraction

k=k,tq ho=ho,+hQ(Qq)

q =2k, sin0=2n2sing
C

measuring ® - ®, and #sin one can determine dispersion (q)

main disadvantage — difficult to measure o - ®, accurately

This difficulty can be overcome by use of neutron scattering

Energy of "thermal” neutrons is comparable with hQ (80 meV for ix1A)

Techniques for probing lattice vibrations
® Inelastic X-ray scattering in GaN

k=K,*0 7hw=hwo,+hQ(Q)

q 1006
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Brillouin and Raman spectroscopy
Inelastic light scattering mediated by the electronic polarizability of the medium

® a material or a molecule scatters irradiant light from a source

® Most of the scattered light is at the same wavelength as the laser source
(elastic, or Raileigh scattering)

® but a small amount of light is scattered at different wavelengths (inelastic,
or Raman scattering)

Elastic
(Raileigh)
Scattering

Stokes ®; Anti-Stokes

Raman Raman
Scattering Scattering
Raileigh o-Qq) ot Q(q)

Analysis of scattered light energy, polarization, relative intensity

Raman scattering in crystalline solids

Not every crystal lattice vibration can be probed by Raman
scattering. There are certain Selection rules:
1. Energy conservation:

ho, =ho, +hQ;

2. Momentum conservation: 4 K «
k, =k, *q :>0S|q|$2|k|:>0£|q|£77m —+q=0 =7
. i ki

1

Ai~5000 A, ay~4-5A =N ;0000 >> a0 ke k

phonon

= only small wavevector (cloze to BZ center) phonons are seen in
the 15t order (single phonon) Raman spectra of bulk crystals

3. Selection rules determined by crystal symmetry

provides information on lattice vibrations or other excitations' 14
Raman scattering in crystalline solids Raman scattering in crystalline solids
Raman @ The Nobel Prize in Physics 1930 THE 1930 NOBEL PRIZE FOR PHYSICS: A CLOSE DECISION? Raman @ The Nobel Prize in Physics 1930
! scattering by scattering
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Sir
INTRODUCTION Chandrasekhara
Venkata Raman

In 1930, the coveted Nobel Prize for Physics was awarded to Sir C.V. Raman
(1888-1970) for his achievements in the ficld of light scattering and the discovery of
the Raman effect. The effect deals with the scattering of monochromatic light from mdia
substances. The spectrum o the scattered light gives information abeut the molecular
structure.

The discovery of the effect wis hailed by an American physicist BW. Wood
(1868-1955) as *__one of the best canvincing proafs of the quantum theary” | Due to
the simplicity of the appaatus,” the application of the discovery in the field of
experimental and heorctical physics grew rpidly, Within two years and five menths,
385 papers and five special monographs were published.” The significance of fhe
invention was so evident that the Nobel Committee decided to honour the discoverer
within two years of the discovery*

However, in the past, questions have been raised about the sharing of the prize
between the Russian scientists and Raman. For example, the authors R.G.W. Brown
and ER. Pike wrote, *._in view of all the eircumstances, however, it would be
interesting o know why it was not shared with the Russians™.” Similarly. Raman’s
biographer, Gi.H. Keswani, asked, “Why did the Nobel Committee for physics not vate
for the sharing of the prize by the _.. Russians?" * The famous Russian scientist 1L
Fabelinskii pointed out: “In 1930 ... the Nobel Prize in physics was awarded 1o
Raman alone for the discovery of combination scattering’,” and “There remains the 16
question why the Russian physicists were not awarded the Nobel Prize for physics
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Example of Raman scattering in crystalline solids

Intensity (arb. units)
n

. A
Z g4l | TOrL0, )
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TO-L0, L0,

g - LO, 3
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Raman Shift cm”) . 2x T02 + L02
FIG. 1. (a) Solid and dotted lines show the Raman spectra of 3 acouStlc mOdeS 2 X TO + LO
| pm STO film at T = 5 K without electric field and in the . 3 3
presence of an extemal electric field of 22 % 10* V/em di- | D Optlcal modes: 3x 4
rected normal to the film plane, respectively. The soft-mode ’ 2 X ]wO4 + LO4

components are labeled A and E. Structural modes are denoted
by R. Optical phonons from the SRO buffer layer are marked
with stars. The inset shows the schematics of the investigated
trilayer ITO/STO/SRO structure grown on an STO substrate.
(b) Electric-field-induced modification of the Raman intensity
obtain by subtracting spectrum at £ = 22 % 10* V/em from
that at £ = 0 for different temperatures shown next to the spec- 17
tra. Spectra are shifted vertically for clarity.

How do we measure dispersion curves? [nelastic neutron scattering

If you can measure the energy lost by the neutron (by causing a vibration in the

solid), and you can measure which direction you created the wave (the
wavevector), then you can construct a dispersion curve

3-axis spectrometer with ~
rot atable crystals and o

|
rot atable sample E s o
e e Vel 10 Changes inthe
& 5 vy 7:)'," energy of the
. G- prd Ty neutrons are first
Atomsina analysed in an
A crystalline sample L, ¢ analyser crystal...
) [* 1§ s * C
~, O, [0 &

When the neutrons
penetrate the sample

' they start or cancel
oscillations in the
. fcwstaldthat :tmts a"‘; atoms. If the neutrons
orw:r» CLL rlunsth create phonons or
! ’ a certain waveleng mmagrions they

(:"Efﬂa\g ':;'""::t' themselves lose the ...and the neutrons
L L EOU N energy these absorb then counted in a

= inelastic scattering detector.
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Summary

1
“ Phonon thermal conductivity K= ngl

+“ Mechanisms of phonon scattering affecting thermal resistivity:
® umklapp processes of phonon-phonons collision — important at
high T
* collision of a phonon with defects and impurities in the crystal
* collision of a phonon with the external boundaries of the crystal —
important at low T
+«» Anharmonism of potential energy is responsible for such effects as:
® phonon-phonon interaction
* thermal expansion
+«* Techniques for probing lattice vibrations:

Inelastic X-ray scattering, Neutron scattering,
Infrared spectroscopy, Brillouin and Raman scattering
Electron energy loss spectroscopy
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Optical Properties of Solids
Dielectric function formalism
Phonon contribution to Dielectric function and

Light interaction with Phonons

(in this Lecture K is a wavevector of light)

20




The interaction of radiation with matter

Name Differential form Integral form 5
V=ig +ip +ks-
Gauss's law: V-E= Fﬂ j{E dA = QS eI i
-0 [}
Gauss' law for magnetism
¢ V-B=0
(absence of magnetic manopoles)

e
oB j{ a"I’B s
AL

Faraday's law of induction VxE= _(’:Tt =

Ampére's Circuital Law JE ddgss

{with Mawell's correction) Vx B =l + posy 05 = pinls + poes at
P =vy.5E L 1
M= XmH g A = g He

and the D and B fislds are related to E and H by: D - 6‘(6())E where

D = gE+P = (14+x.)eE = ¢E = _ = n— /JK
B — p(H+M) — (I4xm)ueH — pH ] = o'(a))E V 1o

%, 15 the electrical susceptibility of the material,

Symbol Name Numerical Value |SI Unit of Measure
o 15 the magnetic susceptibility of the material, ¢ Speed of light in vacuum 2.99702458 % 10° meters per secand
£ is the electrical permittivity of the material, and o electric constant 8.85410 x 1072 |farads per meter
W is the magnetic permeability of the material Ho magnetic constant dr x 1077 fenries per meter

21

For your references:

Symbol Meaning (first term is the most commen) 51 Unit of Measure
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The interaction of radiation with matter

#E ., _,
Decoupled form of MaxEq. B ~cVE =0
in vacuum: 6;_13 _A.vB - 0
Same in material medium
(solid state) [SI] [C6S]
- - _ epPE Ao OE
- ’E E 2 _ EH =
V’E =¢u Zt oy%—t v 2R T TE o
277 —
Vzlf[:gﬂaH+ ﬂ@ﬂ vgﬁzﬂi)zH_’_—L"mﬂ oH
or’ ot 2 Ot2 2 at
Solution:
. nl &K r—w
Plane EM wave (light) E = Ege'*™1)

23

2 = -
V2E = su §+a,u—%£: E = B oi(Km—wt)
EM wave (light
K-vector of light: (light)
w 2r
If Kis real K®) = pye,0° =c—2 K, ===

(no losses)

K’ = usw’ +iouoc = ,uoeoa)z( He +it 29 J
Hy& /wuogo

Loss part of K-vector

for nonmagnetic media: u =y, K=K, —+z—:ﬁK0
E O

E .0 . .
—4i——=ny+in, =ny +i
g EW 2K,

a(w)

complex refractive index: 7=

o - absorption coefficient (m?); E, = Eoe_% and [(z)=1,e” "




The interaction of radiation with matter

Complex Dielectric Function

_ lG_ " os "
5wmpla(co) —g+z—g +i-¢

ncomplex ((0) = nR +i- nl
2 2
g' ny —n,

real —

g" =2-n,n,

imaginary

"

]l
_||
by

wul]
[l

~.l
[l
Q

Light along z-axis:

E(z,t)= E,e” exp(iKz) = E,e™™ exp{izl(o £y ii}

for A>>a, K,~0

& &0

onductivity Teomplex. We will relate these quantities in two ways:

1. to obhservables such as the refle

energy band gaps, ete.

ctivity which we measure in the laboratory.,

t, mj_

2. to properties of the solid such as the carrier density, relaxation time, effective masses,

Linear spectroscopy

Schematic diagram for normal incidence reflectivity

Reflected Yean
E, |2

R =|—=
X B

Incident Gean'

Y Transmitted

£, beam

Normal

iy
IATAY

/ Incidence

0

————empty npnce—alq— golid——s

_ (1-n,)" +n,’

|
+i|  (l+n,) +n,’

1=R+A+T
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Wavelength (um)

- 1Io= ulsz 1?' 1° “electronic
I o ga ®
. ] ) transitions
ol 5 phonon
_ 8
o g 8
< 104 E g g
5 e -] H
£ 5 ? g :
8 10°f 8 g 85 g
° &5 2
= 2 338 g
a s . . 22 8
g 0% Frgec', § £ g ] 2
T ] 8
s £ S 5% 5
"Metal” & <>
100 1 1 1
102 102 101 100

Photon energy (eV)

n

Hypothetical absorption spectrum for a typical I[1I-V semiconductor as a func-

tion of phonon energy.

Electric field and Displacement vector in a material medium

Ex
E(r,t) = E, expli(Ki — wt)] = | E,
Ez

D=¢E
D, w Eu € || E,
Dylgo- &, &, &.'|E,
Dz zx Ezy zz Ez

é(0) =& 1+ 7()]

6 independent
components

In general situation:

E.E. € 0 0

xx Xy Xz

EXX
e=|e, &, &.|=|0 ¢, 0
£, &, &€ 0 0 ¢,

zx zy zz

In crystals the number of independent
components decreases according to

the symmetry

[+

In isotropic media:

EAX EX/V grz g 0 O
e=|¢, ¢, &.|=|0 €0 |=¢
EZY Ezy EZZ O 0 8

28




Dielectric function contributions

e(w)=¢e(w)/ &y =1+ yp, (@) + (@) + 1z (@)

2 .
T\ @, — " +iwy,

S?
o)

2

Q >
_ p 2 NFCe
Xrc(@)= 5 Q= .
—602 + la)}/ g gcarem
N e - carrier
concentration
2
P.

Light Photon

lonic polarizability / Phonon contribution

Evaluate the dielectric constant of an ionic crystal.

lonic polarizability is related to the motion of ions.

Recall the linear chain model we used to describe lattice vibrations:

Equations of motion N M, M,
in the presence of - O @M O @ WO
1 . 4>
external field: -1 " i p
d’u,
= — — — _p*k
M, dr> - C(Zun Un+1 ”"—1) e*E e* - effective charge,
u E — external field;
My =" = _C(2u,, —u,,, —u,)+e*E ,
d12 n+ n+ n assume E :Eoez(qx—wl)
also assume long wavelength, A>>a, > ¢ ~0 =
u, = uO—e_iwt Up1 = u0+e—ia)t 0

Substitute this solution into equations of motion, solve for u,, , u,

Get e* e*
uO = —EO u0+ = > >
Mz(a’t —@ )

- 2 2
M (o, - o)
where w, = [2C L+L - transverse optical phonon frequency
M, M, atg=20

The ionic polarization P, is then B, =n,e™(uy, —u,_)

Ey

(n,, — number of dipoles per unit volume); P =gy E
relative permittivity: &, = &g, = 1+y; y =y, + 1

n e*
M, e (0 — )

Get gr(a)):1+Zel+

oY MM,
= - reduced mass

where Mp=|—-=H+ =
K (Ml M, M+ M, 3

At high frequencies, »>> o, , the ionic term vanishes: ¢, =1+ y,

n e*
— —_ m
at =0, gr0—1+;(el+M >
r€0 W,
can rewrite
*2 _
nme grO groo

e(w)y=1+y, + =& +———
(@) Ael M0’ (-0’ /0’ ™ 1-0/o]

gr 0

Note that ¢,(w)—> . Also, ¢(w)=0at @, =, -
&

roo

Between w, and w; ¢&(w) <0 = index of refraction is imaginary:

N(o)=\J¢, =i k(o)

wave is reflected
32




Physical meaning of w, - the frequency of longitudinal optical phonon

V-D=¢(V-E)=0 yun-100_ 43
TO phonons: LO phonons: S lin )
no field in z direction:; macroscopic field along z v.h=0
, V=0

from the symmetry of the

problem: OF, #0=>V-D=0

0z

Ex =0=V-E=0

ox only if &(w) =0

TO phonon LO phonon

Lyddane-Sachs-Teller relation

E.0— &€ &
_ r0 700 2 0 2
We had &,.(®) =&, tT——>7 2 and @ = — o,
l-w /a)t Eroo
combine, get
2 2 2
_ ol g0 O
& (0) =€, S 5 r < 2
o, - ro O
If many phonon branches:
2 2 _
Wip —O If phonon decay is included:
e(w)=¢e, I I ﬁ
J @rop — @ wl, —0’-iy,, ®
Lo, Lo,
e(w)=c¢,[] — —
i Wro; @ T 1Yo @

34

. 2
Lyddane-Sachs-Teller relation .o @
.2
groo a)t
Ellipsometry
800 3 ‘
o 2
E e 500 2 pm film m 2 umfim 112
‘€ (T <10 0 bulkST .-
5 T 5RO 400 e I “ 10
£ - TO4 8 f -
g v 300 - s T
oy Berreman 1 s b e =
g 200 mode ; it 1° 5
[ o4 fmeoom-ET e o
£ 100 LOSX T.es2K E,D’ 14 s
£ Ak l ’ P
0 h a
s R iR
W 300 —m— 2 umfilm
E z 200 o | O buksT
] 100F
E Y w0 .,j\ 2 b
2 . ] .
€ -1oof i - T=32K
2 200 1
E Vs
1 1 M?K 1 1 1 1 1 1 -800_ 1 1 L L 1 ; ; h‘

L L
0 100 200 300 400 500 600 700 © ¢ 50 Teo Teo zo o 3w

Wavenumber (cm-1)

0 100 200 300 400 500 600 70O 8OO 900
Raman Shilt (em )

A.A. Sirenko, et al., Nature 404, 373 (2000)
A.A. Sirenko, et al., Phys. Rev. Lett. 84, 4625 (2000) and Phys. Rev. Lett. 82, 44500 (1999)
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Temperature (K)

Electronic polarizability of solids
S(similar to electronic transitions in atoms

oy
-
o

-

[

|

:

|

B o

i

For an accurate quantitative description, quantum mechanics is needed

But we can get some general ideas with classical approach

Recall our model of atom:

Displaced electronic cloud feels a restoring
force, which is linear (for small displacements)

Total force F =¢eE — sAr =m

x = spring constant
m = mass

2
Ar
dt?

36

For simplicity consider one-dimensional case (Ar parallel to x)




Without an external field: d%x
—kx=m i
t

Equation for harmonic oscillator. Solution: harmonic vibration

x(1) :xoe"""of with frequency ¢ = [k/m

Now, have electromagnetic wave with field E()=FE e

(1) = w;/_ " _E@)

Expect strong response (large x), = large susceptibility y =
large refractive index n at o~ @,

Dipole moment p = gx, so polarization P = eNZx
(N atoms per unit volume, Z electrons per atom) =

2
— -i e ZN/m
Force F(U—eEoe Lot d2 P= 0)2 a)z E Recall P= SOXE and € = 80(1+X)
i b 0~
Equation of motion becomes  eE e o —ma)gx =m—- ,
(forced oscillator) dt get ~ NZe? 1 or oo E{H NZe 1
- 22 Enm (a)z —COZ)
. . Eym 0
Look for a solution x(2)=x e o (o5 —o7) 0
get e/m ot e/m & NZe* 1
M) =— 5 Ee ™ =— 5 E) and  n(@)=—=1+ .
Wy — o — @ 37 & Em | o) —w 38
Now, consider damping force proportional to speed : n is complex for nonzero damping: n= n, +in,
F. =—m ax and K =nkK,, - complex wavenumber
damp — 4 dt
What does it mean?
Equation of motion becomes (damped oscillator): , - ' _
| o d2x E — Eoez(Kxfa)t) — Eoez[nRHn]]Kox—lwt — Eoe—nIKoxez(nRKOx—wt)
eE e —ma)gx—myj =m—s-
t dt or E = E ei(nRKOx—a)t) where E() — Eoe—nIKox
: . . — 0
Again, look for a solution x(#)=x, e’
Amplitude decays as wave propagates — absorption;
“m 2 2 just includes damping - o
" @o — @ Ty Usually write it — n + i - Then E,=E.e A
2k 0 0
Therefore i _ ; ~ ~
, c NZo2 1 instead of np +in; and intensity 1 oc E? :Ioe ax
n (a)) =—=1+ 3 3 0
€o Eom \ Wy —w” +iwy 2

o - absorption coefficient (m™) 40




Reflectivity at normal incidence (in air)

(n—1)?

power (intensity): R= |”|2 =
: (n+1)?2

Field amplitude: r="—
n+1

2, .2

~ 2 (ng =1)" +nj
If n=ng+in, then R=|V| =mrt=——
(ng +1)" +n;

As we've seen, the dielectric function and refractive index

are generally complex: g, =g +ig"

" —
e = 2ngn,;

Reflected Dearm

Transuitted
wan

n, is called extinction coefficient

Ineident Dasa
Wormal

Len
A gty .pm—-»|u- [T T E—

Incidence

NZe* 1
=—=l+ 2 2
&g Eom \ wy —w” +ioy
— _/
~
__ Ught Photon Ze(w)
Quantum mechanics e? f;
gives similar result for a,(0) = ZZ > o .
Electronic polarizability: ;W@ Ty ;

Many resonant frequencies o, correspond to energy transitions
Weighting factors f; called oscillator strengths
(related to transition matrix elements)
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Optical properties of conductive solids (metals)
conductivity of a medium o J=o0cE

Including conductivity in Maxwell's equations in the medium:

V><B=,uJ+,u£§
ot

leads to wave equation:

Differs from a "standard" wave equation by the first term in the right part

Still, look for plane wave solution: E(I’, t) _ Eoez‘(ﬁ-f—m)
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Reflection from metals
. . 1/2
Have complex refractive index n,;: _ | & L
n=|—+i—

ng, n; = al2K, are real

Reflectivity at normal incidence (in air) R = |r|2 —

Consider a very good metal: large o

(e.g. silver: o= 6-107 Q''m") infrared

. a
=n,+i——
g, EW 2K

0

(g =D7+n}

(ng +1)* +n?

UV ivisible;

100 5
FOr \ =500 nm and € ~ ¢ %0 i
a & i
~ 2000 i
€ow '§ Au :
E 40 4 ;
a = !
then ——=n,>>n, -1 .t ;
0 |
y H
= R —> 1 El:lunm fhlilmn 1:1!11 2 1I:n| f;un

Wavelength




Dispersion equation in metals
The dispersion we got in a model of oscillating electrons:

nz(w):1+NFCe2 1 @y =k/m,

2 2 .
gm \ ) —o" +ioy

k — "spring constant”
m, — electron mass

in metal, there are free electrons — no restoring force = w, =0

Still, there may be bound electrons, too.

So N, 1 /i
2
n* (o) =1+—-< —+ >y
gm | —o" +iwy, T ;-0 +ioy,
N Y
2\ ~"
free electrons bound electrons
(like in dielectric)
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If we neglect the contribution of bound electrons and also neglect
free electron damping 7,

N, e
2
Then n'(w)=1-——
E,JM@
2 - plasma frequenc
Introduce ), — Npce P ( d )y
P e =&(lw—> o
gcoreme core
2 2
w (4]
2 ' _ . __»r
Then n (C()) =1 _—127 & (a)) - gcare 1 2
0]

Below @, refractive index is complex — absorption;
above ®, n is real, free electron absorption is small

For most metals ), lies in the UV range
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The Free Carrier Contribution

N 100
Where carrier
concentration )
. . /
is higher? 80 /
Choose between a ' a.
and b. Show work  z e}
=
=
Plasma edges observed in é
.. 2 40
the room temperature reflectivity spec- >
tra of n-type InSh with carrier con- “'*‘!;-u..;_.
centration n varying between 3.5 x N -‘1?-.‘
1017 em=3 and 4.0 x 1018 cm=2. 20 R "
\
5 H
Npce i
a)p - - oL i kL L
2
oMM, 5 io. 15 20

Wavelength fum)

Summary

¢ lonic contribution to dielectric function is related to lattice vibrations
and exhibits dispersion in infrared region, given by
the Lyddane-Sachs-Teller relation:
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Wi, — @

e(w) = 8001_[ —

+¢ Electronic polarizability is given by

2

a0 — 1 iy L

2, .
m\ —w +iwy, J a)oj—co +za)7j
N U _
Y ~
free electrons bound electrons

+ Dielectric function and refractive index are generally complex:

— ! P I o= ; . r— 2_p2 . " —
e, =¢/ +ie; mn=np+in; ; g'=n-n7 ; &' =2ngn,

absorption coefficient o = 2K,n;  n; - extinction coefficient  4s




Symbol

Vx
Bl
ot

For your references:

Meaning (first term is the most common)
the divergence operator

the curl operator
partial derivative with respect to time

electric field
also called the electric flux density

Magnetic field

also called the magnetic induction
also called the magnetic field density
also called the magnetic flux density

electric charge density

Permittivity of free space, a universal constant

The flux of the electric field over any closed Gaussian surface S

net unbalanced electric charge enclosed by the Gaussian surface 5, including so-

caled Bound charges

The flux of the magnetic field over any closed surface S

line integral of the electric field along the boundary (therefore necessarily a closed

curve) of the surface S

magnetic flux over any surface S {not necessarily closed)

magnetic permeability of free space, a universal constant
current density

line integral of the magnetic field over the closed boundary of the surface S

net electrical current passing through the surface S

Electric flux over any surface =, not necessarily closed

differential vector element of surface area A, with infinitesimally

small magnitude and direction normal to surface S

differential vector element of path fength tangential to contour

SI Unit of Measure

per meter (factor contributed by applying
either operator)

per second (factor contributed by applying the
operator)

volt per meter or, equivalently,
newton per coulomb

tesla, or equivalently,
weber per square meter

coulomb per cubic meter

farads per meter

JoLle-meter per coulomib
coulombs

Tesla meter-squared or webber
Joule per coulomb

webber

henries per meter, or newtons per ampers
squared

ampere per square meter

tesla-meter

amperes

square meters
22

meters



