
Phys 446  Solid State Physics 
Lecture 8 

(Ch. 4.9 – 4.10, 5.1-5.6)

Last time: Discussed the free electron (Drude) model applied 
to electronic specific heat and electrical conductivity. 

Today:   Finish with Free electron model. 

Thermal conductivity. 

Motion in magnetic field: cyclotron resonance and 
Hall effect

Start new chapter: energy bands in solids

Summary Last Lecture
Free electron model – simplest way to describe electronic properties of 
metals: the valence electrons of free atoms become conduction electrons in 
crystal and move freely throughout the crystal. 

Summary Last Lecture
(continued)

Fermi energy - energy of the highest occupied electronic level at T = 0 K; 
3D case:

Density of states of 3D free electron gas: 

Heat capacity of free electron gas 
at low temperatures kBT << EF  :
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Motion in a magnetic field: cyclotron resonance
Applied magnetic field →the Lorentz force:   F = −e[E+(v × B)]            

Perfect metal, no electric field - the equation of motion is:

Let the magnetic field to be along the z-direction. Then

yc
x v

dt
dv ω−=

xc
y v

dt
dv

ω= where - cyclotron frequency
m
eB

c =ω

For moderate magnetic 
fields (~ few kG),  
ωc ~ few GHz.

e.g. for B = 0.1 T,   
fc = ωc/2π = 2.8 GHz 

Cyclotron resonance – peak in absorption of electromagnetic waves at ωc
Used to measure the effective mass in metals and semiconductors

absorption





Summary of free electron model 
Free electron model – simplest way to describe electronic properties of 
metals: the valence electrons of free atoms become conduction electrons in 
crystal and move freely throughout the crystal. 

Fermi energy - the energy of the highest occupied electronic level at T = 0 
K;

Density of states of 3D free electron gas: 

Heat capacity of free electron gas 
at low temperatures kBT << EF  :
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Electrical conductivity:

Thermal conductivity:
Wiedemann-Franz law 
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The free electron model gives a good insight into many properties of 
metals, such as the heat capacity, thermal conductivity and electrical 
conductivity. However, it fails to explain a number of important
properties and experimental facts, for example:

• the difference between metals, semiconductors and insulators

•It does not explain the occurrence of positive values of the Hall 
coefficient. 

•Also the relation between conduction electrons in the metal and the 
number of valence electrons in free atoms is not always correct.
Bivalent and trivalent metals are consistently less conductive than the 
monovalent metals (Cu, Ag, Au)

⇒ need a more accurate theory, which would be able to answer these
questions – the band theory

Limitations of free electron model

The problem of electrons in a solid – a many-electron problem

The full Hamiltonian contains not only the one-electron potentials 
describing the interactions of the electrons with atomic nuclei, but also 
pair potentials describing the electron-electron interactions 

The many-electron problem is impossible to solve exactly ⇒
simplified assumptions needed

The simplest approach we have already considered - a free electron 
model 

The next step is an independent electron approximation:  
assume that all the interactions are described by an effective potential.

One of the most important properties 
of this potential - its periodicity: 

U(r) = U(r + T)

Bloch theorem
Write the Schrödinger equation the approximation of non-interacting 
electrons: 

ψ(r) – wave function for one electron.

Independent electrons, which obey a one-electron Schrödinger 
equation a periodic potential U(r) = U(r + T)   - Bloch electrons

Bloch theorem: the solution has the form where 

uk(r)= uk(r+T)  - a periodic function with the same period as the lattice

Bloch theorem introduces a wave vector k, which plays the same 
fundamental role in the motion in a periodic potential that the free 
electron wave vector k plays in the free-electron theory. 

ħk is known as the crystal momentum or quasi-momentum



Another conclusions following from the Bloch theorem: 
the wave vector k can always be confined to the first Brillouin zone

This is because any k' not in the first Brillouin zone can be written as    
k' = k + G Then, if the Bloch form holds for k', it will also hold for k

Energy bands

Substitute the solutions in the Bloch form into the

Schrodinger equation, obtain: 

with periodic condition: uk(r)= uk(r+T) 

For any k, find an infinite number of solutions with discrete energies 
En(k), labeled with the band index n

For each n, the set of electronic levels specified by En(k) is called an 
energy band. The information contained in these functions for different 
n and k is referred to as the band structure of the solid.

Number of states in a band
The number of states in a band within the first Brillouin zone is equal 
to the number of primitive unit cells N in the crystal.

Consider the one-dimensional case, periodic boundary conditions. 
Allowed values of k form a uniform mesh whose unit spacing is 2π/L 

⇒ The number of states inside the first zone, whose length is 2π/a, 
is  (2π/a)/(2π/L) = L/a = N, where N is the number of unit cells

A similar argument may be applied in 2- and 3-dimensional cases.

Taking into account two spin orientations, conclude that there are 2N
independent states (orbitals) in each energy band.  

Nearly free electron (weak binding) model
First step: empty-lattice model. When 
the potential is zero the solutions of the 
Schrödinger equation are plane waves:
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where the wave function is normalized 
to the volume of unit cell Vc

Now, turn on a weak potential. Consider it as a weak periodic 
perturbation in Hamiltonian. 

From perturbation theory have: 

∑ −
++=

jk ji
kikiii kEkE

kiUkj
UkEkE

,'
00

2

0
,

0
,

0

)()(
,',

)()( ψψ

where index i refers to ith band; 0 refers to empty-lattice model. 

The first term is the undisturbed free-electron 
value for the energy.

The second term is the mean value of the 
potential in the state i, k 
– constant independent of k – can set to zero

The third term – the 2nd order correction 

– vanishes except  k' = k + G



The third term can be rewritten as

UG - Fourier transform of the crystal potential U

Finally we obtain for the energy:

However, the perturbation theory cannot be applied when the 
potential cannot be considered as a small perturbation 

This happens when the magnitude of the potential becomes 
comparable with the energy separation between the bands, i.e.

In this case we have to solve the Schrödinger equation explicitly

There are special k points for which the energy levels become

degenerate and the relationship

holds for any non-zero value of the potential:

This conduction implies that k 
must lie on a Bragg plane 
bisecting the line joining the 
origin of k space and the 
reciprocal lattice point G

⇒ a weak periodic potential has its major effect on those free 
electron levels whose wave vectors are close to ones at which the 
Bragg reflection can occur.

In order to find the energy levels and the wave functions near these 
points we need to invoke the degenerate perturbation theory.

The result: 

This results is particularly simple for point 
lying on the Bragg plane: 

Obtain 

The magnitude of the band gap is equal 
to twice the Fourier component of the 

crystal potential.

Illustrate this behavior using a one-dimensional lattice 

The splitting of the bands at each Bragg plane in the extended-zone 
scheme results in the splitting of the bands both at the boundaries 
and at the centre of the first Brillouin zone.



Intermediate Summary 
The Bloch theorem: the wave function for an electron in periodic

potential can be written in the form: where

uk(r) = uk(r+T) - a periodic function with the period of the lattice

The energy spectrum of electrons consists of a set of continuous
energy bands, separated by regions with no allowed states - gaps

Function E(k) satisfies the symmetry properties of a crystal,  
in particular, the translational invariance:  E(k) = E(k +G) 

This allows considering the first Brillouin zone only. 

Also, inversion symmetry: E(k) = E(-k)

Nearly free electron model – weak crystal potential. Electron 
behaves essentially as a free particle, except the wave vectors close 
to the boundaries of the zone. 
In these regions, energy gaps appear: Eg = 2|UG|

Origin of the energy gaps

We focused on the energy values

got away from the 
zone edges

and

near the zone edges.

Now, let's see how the wave functions are modified by (weak) crystal 
potential.  From the perturbation theory, have for the first band
(away from the zone edge): 
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Here, again, we leave only the nearest-band (2nd) term, as we did for 
the energy levels – because of the large denominator for higher bands. 

Functions ψ0(k) are those of free electrons: 

If k is not close to the zone edge, the coefficient of is very small

So, 
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For simplicity we consider a one-dimensional lattice, for which the 
zone edges are k=½G = π/a (Bragg reflection occurs) 

The result:
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at the zone edge, the scattering is so strong that the reflected wave 
has the same amplitude as the incident wave ⇒ the electron is 
represented there by a standing wave, unlike a free particle

The distribution of the charge density is proportional to |ψ|2, so that
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Tight binding model

Assumptions:

– atomic potential is strong, electrons are tightly bound to the ions

– the problem for isolated atoms is solved: know wave functions φn
and energies En of atomic orbitals

– weak overlapping of 
atomic orbitals

Start with 1D case

Bloch function in the form: )(1),(
1

2/1 jn

N

j

ikX Xxe
N

xk j −= ∑
=

φψ

where Xj = ja – position of the jth atom, a – lattice constant;
ψn(x- Xj) – atomic orbital centered around the jth atom – large near Xj , 
but decays rapidly avay from it.
Small overlap exists only between the neighboring atoms



function periodic
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The function chosen satisfies the Bloch theorem: 

near Xj ,  ψ(k,x) ≈ eikXj φn(x - Xj) ~ φn(x - Xj) - behaves like atomic orbital

The energy of the electron described by ψ(k) is E(k) = 〈ψ(k)|H|ψ(k)〉

Obtain )()(1)( '
',

)( '
jnjn

jj

XXik XxHXxe
N

kE jj −−= ∑ − φφ

Summation over j, j' covers all the atoms in the lattice. 

For each j', the sum over j gives the same result ⇒ get N equal terms
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with crystal potential as a sum of atomic potentials: 
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j +=−= ∑ v(x) – potential due to the 
atom in the origin;
V'(x) – due to all the others

V'(x) is small compared to v(x) near the origin. Return to  E(k):
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sign is chosen so that β is positive, 
since V' is negative
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β is small: φn are large only near the origin, where V' is small

Let's consider the interaction term – has two terms in the sum: X = ± a
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the atomic functions are symmetric ⇒ get the same result for X = -a
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Original energy level En has broadened 
into an energy band.

The bottom of the band is E0
- located at k = 0

The band width = 4γ – proportional to the overlap integral

For small k,  ka/2 << 1  (near the zone center)
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The results obtained can be extended to 3D case.

For simple cubic lattice, get 
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Velocity of the Bloch electron: 
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- inverse effective mass tensor

Effective mass is 
determined by the 
curvature of 
dispersion

)(1 kk Ev ∇=3D: 

Metals, Insulators, semimetals, semiconductors

insulator (semi) metal metal

Density of states
Number of electronic states per unit energy range (E, E+dE):   D(E)dE

D(E) – density of states. 

In the effective mass approximation, 
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Summary 
Tight binding model – strong crystal potential, weak overlap. 
The band width increases and electrons become more mobile 
(smaller effective mass) as the overlap between atomic wave 
functions increases

Concept of effective mass: in a periodic potential electron moves as 
in free space, but with different mass:

Metals: partially filled bands; insulators – at 0 K the valence band is 
full, conductance band is empty. 
Semiconductors and semimetals. 

Velocity of the Bloch electron:

remains constant in perfectly periodic lattice

Density of states. Simple case: 
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Summary
Velocity of the Bloch electron:

In the presence of an electric field the electron 
moves in k-space according to the relation: 

This is equivalent to the Newton’s second law if we assume that the electron 
momentum is equal to ħk

Dynamical effective mass: 

m* is inversely proportional to the curvature of the dispersion. 

In a general case the 
effective mass is a tensor: 

pc = ħk is called the crystal momentum or quasi-momentum. 

The actual momentum is given by

Can show that p = m0v, where m0 is the free electron mass, 
v is given by the above expression
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Physical origin of the effective mass

Since p = m0v - true momentum, one can write:

The total force is the sum of the external and lattice forces.

But 

So, we can write 

Lexttotdt
dm FFFv
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The difference between m* and m0 lies in the presence of the lattice force FL

Current density

Free electron model:  j = −env ;    n - the number of valence electrons 
per unit volume, and v - the velocity of electrons.

Generalize this expression to the case of Bloch electrons.

In this case the velocity depends of the wave vector ⇒
need to sum up over k vectors 
for which there are occupied states available:

Convenient to replace the summation by the integration. 
The volume of k-space per allowed k value is ∆k = 8π3/V  ⇒
we can write the sum over k as

obtain for the current density:



Holes
Already know that completely filled bands do not contribute to the 
current

Therefore, can write: 

we had for the current density:

can equally well write this in the form:

⇒ the current produced by electrons occupying a specified set of levels 
in a band is precisely the same as the current that would be produced if 
the specified levels were unoccupied and all other levels in the band 
were occupied but with particles of charge +e  - holes.
Convenient to consider transport of the holes for the bands which are 
almost occupied, so that only a few electrons are missing. 

Can introduce the effective mass for the holes. It has a negative sign.
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Let's obtain the corresponding expression within the band theory.
Same idea: 

No electric field - the 
Fermi sphere is cantered 
at the origin. The total 
current of the system is 
zero.

Applied field → the whole Fermi sphere is displaced 

The average displacement is 
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Cyclotron resonance

Lorentz force:   F = −e(v × B)      

Equation of motion:

Change in k in a time interval δt: 

Period of cyclic motion: 
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Generalized cyclotron frequency for 
Bloch electron:

When effective mass approximation 
is applicable, v(k) = ħk/m*    ⇒
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You will show this in your next homework



Summary 
Physical origin of effective mass: crystal field

Concept of the hole: consider transport of the holes for the bands, 
which are nearly occupied.   

Electrical conductivity: 

Generalized cyclotron frequency:

Hall coefficient for metals with both electrons and holes: 

)g(ve FFF ετσ 22

3
1

=

1

)(
2

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫ k

k
v

eB
c

δπω

( )2

22

he

hhee RRR
σσ

σσ
+

+
=


