
Phys 446  Solid State Physics 
Last Lecture Dec 7th, 2007

Course review

I. Crystal structure, and symmetry

Crystal: atoms are arranged so that their positions are periodic in 
all three dimensions. Crystal lattice - the periodic array of points.

An atom or a group of atoms associated with every lattice point is 
called basis of the lattice

In addition to periodicity, each lattice can have other symmetry
properties (inversion, mirror planes, rotation axes)

7 crystal systems and 14 Bravais lattices

A particular combination of symmetry operations determined by 
symmetry of the basis and the symmetry of the Bravais lattice 
defines a point symmetry group. There are 32 point groups -
crystal classes.

Notation for crystallographic directions and planes: Miller indices

II. Interatomic forces and types of chemical bonds
Attractive electrostatic interaction between electrons and nuclei –
the force responsible for cohesion of solids

Repulsive interaction between atoms is primarily due to 
electrostatic repulsion of overlapping charge distributions and 
Pauli principle

Several types of attractive forces: 
• Ionic crystals – electrostatic forces between "+" and "-" ions
• Covalent bond: overlap of charge distributions with antiparallel

spin
• Metals: reduction of kinetic energy of electrons in free state 

compared to the localized state of a single atom
• Secondary forces (Van der Waals, hydrogen) become 

significant when the other bonds are impossible, e.g. in inert 
gases

Physical properties are closely related to the type of bonding

Diffraction of waves by crystal lattice

Most methods for determining the atomic structure of crystals are 
based on scattering of particles/radiation (X-rays, electrons, 
neutrons). The wavelength of the radiation should be comparable 
to a typical interatomic distance (few Å=10-8 cm)
The Bragg law: condition for a sharp peak in the intensity of the 
scattered radiation. Various statements of the Bragg condition: 
2d·sinθ = mλ ; ∆k = G ; 2k·G = G2

Constricting the reciprocal lattice from the direct lattice. 
Reciprocal lattice is defined by primitive vectors: 

A reciprocal lattice vector has the form G = hb1 + kb2 + lb3
It is normal to (hkl) planes of direct lattice

The set of reciprocal lattice vectors determines the possible 
scattering wave vectors for diffraction



Diffraction, reciprocal lattices and Brillouin zones
First Brillouin zone is the Wigner-Seitz primitive cell of the 
reciprocal lattice
Only waves whose wave vector drawn from the origin terminates 
on a surface of the Brillouin zone can be diffracted by the crystal 

Reciprocal lattices for common structures (e.g. sc ↔ sc; bcc ↔ fcc)
Brillouin zones for these common structures

Diffraction amplitude is determined by a product of several factors: 
atomic form factor, structural factor, Debye-Waller factor

- Atomic scattering factor (form factor) reflects distribution of 
electronic cloud.

- Structure factor – for lattices with a basis of several atoms

- Debye-Waller factor – atomic vibrations are taken into account  
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Elastic properties

Elastic properties are determined by forces 
acting on atoms when they are displaced from 
the equilibrium positions

For small displacements, the potential is harmonic, 
and the restoring force is linear with respect to the 
displacement of atoms.

Elastic properties are described by considering a crystal as a homogeneous 
continuum medium rather than a periodic array of atoms 

•Applied forces are described in terms of stress σ, 

•Displacements of atoms are described in terms of strain ε.

•Elastic constants C relate stress σ and strain ε, so that kl
kl

ijklij C εσ ∑=
(Hooke's law)

Elastic waves sound velocity

All crystal vibrational waves can be described by wave vectors 
within the first Brillouin zone in reciprocal space

More than one atom in a unit cell – acoustic and optical vibrations.

In general three-dimensional lattice with s atoms per unit cell there 
are 3s vibrational branches: 3 acoustic,  3s - 3  optical

Phonon - the quantum of lattice vibration. 
Energy ħω;  momentum ħq

Density of states is important characteristic of lattice vibrations; 
It is related to the dispersion ω = ω(q).  
Simplest case of isotropic solid, for one branch: 

Real density of vibrational states is more complicated
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Heat capacity is related to the density of states. 

Debye model – good when acoustic phonon contribution 
dominates.
At low temperatures gives Cv ∝ T3

Einstein model - simple model for optical phonons 
(ω(q) = constant, DOS is approximated by a δ-function )

At high T both models lead to the Dulong-Petit law: Cv = 3NkB

Phonon thermal conductivity 

Anharmonism of potential energy is responsible for such effects as: 
• phonon-phonon interaction
• thermal expansion
• Pressure and temperature dependence of elastic constants

Phonon heat capacity, thermal conductivity, anharmonism
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Free electron model of metals 
Free electron model – simplest way to describe electronic properties of 
metals: the valence electrons of free atoms become conduction electrons in 
crystal and move freely throughout the crystal. 

Fermi energy - the energy of the highest occupied electronic level at T = 0 
K;

Density of states of 3D free electron gas: 

Heat capacity of free electron gas 
at low temperatures kBT << EF  :
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Electrical conductivity:

Thermal conductivity:
Wiedemann-Franz law 
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The free electron model gives a good insight into many properties of 
metals, such as the heat capacity, thermal conductivity and electrical 
conductivity. However, it fails to explain a number of important
properties and experimental facts, for example:

• the difference between metals, semiconductors and insulators

•It does not explain the occurrence of positive values of the Hall 
coefficient. 

•Also the relation between conduction electrons in the metal and the 
number of valence electrons in free atoms is not always correct.
Bivalent and trivalent metals are consistently less conductive than the 
monovalent metals (Cu, Ag, Au)

⇒ need a more accurate theory, which would be able to answer these
questions – the band theory

Limitations of free electron model

Band theory
The Bloch theorem: the wave function for an electron in periodic

potential can be written in the form: where

uk(r) = uk(r+T) - a periodic function with the period of the lattice

The energy spectrum of electrons consists of a set of continuous
energy bands, separated by regions with no allowed states - gaps

Function E(k) satisfies the symmetry properties of a crystal,  
in particular, the translational invariance:  E(k) = E(k +G) 

This allows considering the first Brillouin zone only. 

Also, inversion symmetry: E(k) = E(-k)

Nearly free electron model – weak crystal potential. Electron 
behaves essentially as a free particle, except the wave vectors close 
to the boundaries of the zone. In these regions, energy gaps appear. 

Tight binding model – strong crystal potential, weak overlap. 
The band width increases and electrons become more mobile 
(smaller effective mass) as the overlap between atomic wave 
functions increases

Concept of effective mass: in a periodic potential electron moves as 
in free space, but with different mass:

Physical origin of effective mass: crystal field

Metals: partially filled bands; insulators – at 0 K the valence band is 
full, conductance band is empty. 
Semiconductors and semimetals. 

Perfectly periodic lattice – no scattering of electrons - velocity 
remains constant
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Density of states - number of electronic states per unit energy 
range. Simple case:

Concept of the hole: consider transport of the holes for the bands, 
which are nearly occupied.   

Electrical conductivity: 

Cyclotron frequency:

Hall coefficient for metals with both electrons and holes: 

)D(ve FFF ετσ 22

3
1

=

( )2

22

he

hhee RRR
σσ

σσ
+

+
=

21
23

22
*2

2
1)( EmED ⎟

⎠
⎞

⎜
⎝
⎛=

π

*m
eB

c =ω

Semiconductors
Semiconductors are mostly covalent crystals with moderate energy

gap (~0.5 – 2.5 eV)

Intrinsic carrier concentration 

Fermi level position in intrinsic semiconductor:

In a doped semiconductor, many impurities form shallow hydrogen-
like levels close to the conductive band (donors) or valence band 
(acceptors), which are completely ionized at room T: 

n = Nd or   p = Na

In the Bohr model, the binding energy is
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Conductivity of semiconductors: 
mobility:

Cyclotron resonance is used to obtain information on effective masses.

Hall coefficient: 

Hall measurements are used to determine carrier concentration and mobility.

In high electric field, the carriers acquire significant energy and become 
"hot". This affects mobility and can cause current instabilities (e.g. Gunn 
effect caused by negative differential conductivity due to inter-valley transfer)

Mechanisms of optical absorption and luminescence (band-to-band, 
excitonic, free carrier, impurity-related).
Fundamental absorption occurs above the bandgap.

photoconductivity – increase of conductivity by generation of additional 
carriers by electromagnetic radiation

Diffusion. Basic relations are Fick's law and the Einstein relation
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Semiconductors Basic physical principles of some semiconductor devices
p-n junction: both electrons and holes diffuse across the junction –
potential barrier develops, called built in voltage Vbi :

The junction acts as rectifier. The current vs applied voltage V is 

Forward: Reverse: 

or

Bipolar junction transistor – two back to back junctions: emitter is forward 
biased, collector is reverse biased

Works as amplifier: when a signal is applied at the emitter, a current pulse 
passes through the base-collector circuit. The voltage gain is: 

Tunnel diode is realized when the doping levels in a p-n junction are very 
high, so the junction width is very small – tunneling occur.
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Dielectric properties of solids

The dielectric constant is defined by the equation: D = εE, where
D is the electric displacement, E – average field inside dielectric.

D = ε0E + P , where polarization P = Np - dipole moment per unit 
volume 

Polarizability α is defined via p = αE; ⇒ polarization P = ε0χE, where 
χ = Nα/ε0 − electric susceptibility.  Generally, χ is a tensor

Local field correction (for cubic crystals) :

leads to the Clausius-Mossotti relation: 

In general, molecular polarizability is the sum of the electronic, ionic, 
and dipolar contributions:

PEE
03

1
ε

+=loc

032
1

ε
α

ε
ε N

r

r =
+
−

Ionic contribution to dielectric function is related to lattice vibrations 
and exhibits dispersion in infrared region, given by 
the Lyddane-Sachs-Teller relation:

Electronic polarizability is given by

Dielectric function and refractive index are generally complex: 
εr = εr' + iεr'' ; ; εr' = nR

2 - nI
2 ; εr'' = 2nRnI

absorption coefficient α = 2k0nI nI - extinction coefficient
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Magnetic properties of materials
When a material medium is placed in a magnetic field, the medium is 
magnetized. Magnetisation is proportional to the magnetic field: 

M = χH ; χ - magnetic susceptibility of the medium
magnetic permittivity µ = µ0(1 + χ);     µr = 1 + χ

Langevin diamagnetism - ions or atoms with all electronic shells filled

negative magnetic susceptibility:

Langevin paramagnetism: if an atom has moment µ, 
then classical paramagnetic susceptibility 

quantum treatment → same result for  

In metals, conduction electrons make a spin paramagnetic 
contribution: - independent on T

Conduction electrons also exhibit diamagnetism due to the cyclotron 
motion, which is equal to 1/3 of the spin paramagnetic contribution.

Ion core effect must also be taken into account
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Ferromagnetic material exhibits spontaneous magnetization below
the Curie temperature (TC). 

Above the TC – paramagnetic; Curie-Weiss Law: 

Cause for ferromagnetism: - exchange interaction

Due to the exchange interaction, a spin disturbances propagates 
through a material as a spin waves. Their quanta - magnons

When a magnetic field is applied to a material, the dipole moments of 
the atoms precess around it with a frequency ω0 = γB0; 
γ = ge/2m – gyromagnetic ratio. 

When an electromagnetic wave of frequency ω = ω0 passes through 
material, it is absorbed by the dipoles. This is called electron
paramagnetic resonance

Nuclear magnetic resonance – the same phenomenon caused by 
nuclear magnetic moments


