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Gene regulation is a series of processes that control gene expression and its extent. The connections among genes and their
regulatory molecules, usually transcription factors, and a descriptive model of such connections are known as gene regulatory
networks (GRNs). Elucidating GRNs is crucial to understand the inner workings of the cell and the complexity of gene interactions.
To date, numerous algorithms have been developed to infer gene regulatory networks. However, as the number of identified genes
increases and the complexity of their interactions is uncovered, networks and their regulatory mechanisms become cumbersome
to test. Furthermore, prodding through experimental results requires an enormous amount of computation, resulting in slow data
processing. Therefore, new approaches are needed to expeditiously analyze copious amounts of experimental data resulting from
cellular GRNs. To meet this need, cloud computing is promising as reported in the literature. Here, we propose new MapReduce
algorithms for inferring gene regulatory networks on a Hadoop cluster in a cloud environment. These algorithms employ an
information-theoretic approach to infer GRNs using time-series microarray data. Experimental results show that our MapReduce
program is much faster than an existing tool while achieving slightly better prediction accuracy than the existing tool.

1. Introduction

Current biotechnology has allowed researchers in various
fields to obtain immense amounts of experimental infor-
mation, ranging from macromolecular sequences and gene
expression data to proteomics and metabolomics. In addi-
tion to large-scale genomic information obtained through
such methods as third-generation DNA sequencing, newer
technology, such as RNA-seq and ChIP-seq, has allowed
researchers to fine-tune the analysis of gene expression
patterns [1–3]. More information on interactions between
transcription factors and DNA, both qualitative and quanti-
tative, is increasingly emerging from microarray data [4–6].
Although microarrays alone do not provide direct evidence

of functional connections among genes, the attachment of
transcription factors (TFs) and their binding sites (TFBSs),
located at specific gene promoters, influences transcription
and modulates RNA production from a particular gene, thus
establishing a first level of functional interaction. Since the
TFs are gene-encoded polypeptides and the target TFBSs
belong to different genes, analyses of TFs-TFBSs interactions
could reveal gene networks and may even contribute to the
elucidation of unknown GRNs [7]. Besides contributing to
inferring and understanding these interactions, determin-
ing GRNs also provides models of such connections [8].
GRNs could be the basis to infer more complex networks,
encompassing gene, protein, and metabolic spaces, as well as
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the entangled and often overlooked signaling pathways that
interconnect them [9–13].

The core GRN apparatus consists of the sum of cis-
regulatory modular DNA sequence elements that interact
with TFs. These sequences read and process information
incoming from the cell, transducing it into the formation
of gene products while modulating their abundance [14].
To make them easier to understand, GRN models must be
genome-oriented and viewable at different levels, from global
patterns of gene expression, down to cis-regulatory DNA and
nucleotide sequences [15].

Interactions among genes are mediated by gene products
such as DNA-binding proteins (including TFs) and miRNAs.
The analyses of gene interactions can be difficult if time-
series data are part of the experimental design [16]. Analysis
of genes, gene products, and metabolism (the Three Spaces
of gene networks) would require additional computing
resources. Among the previously ignored components of
gene networking are miRNAs [17, 18]. In addition to their
importance as regulatory elements in gene expression, the
capacity of miRNAs to be transported from cell to cell impli-
cates them in a panoply of pathophysiological processes that
include antiviral defense, tumorigenesis, lipometabolism,
and glucose metabolism [16].This role in disease complicates
our understanding of translational regulation via endogenous
miRNAs. In addition,miRNAs seem to be present in different
types of foods [19] with potential implications in human
health and disease. Understanding the biogenesis, transport,
and mechanisms of action of miRNAs on their target RNA
would result in possible therapies, requiring large amounts
of computational power, which can be attained by cloud
computing and process parallelizing.

Detailed experimental analysis of several functional regu-
latory elements has revealed that they consist of dense clusters
of unique, short DNA sequences specifically recognized by
a range of TFs. Biochemically, protein-binding to these
sequences controls the regulatory output of the clusters and,
from an informational perspective, clustered specific target
sites determine the type of regulatory outcome and the
cellular functions that will be performed. GRNs are encoded
in the DNA and can be thought of as a sequence-dependent
regulatory genome, given that TFs recognize specific short
DNAmotifs.The small length of thesemotifsmeans that they
will occur frequently but randomly within the enormity of
the total genome of a particular organism [20–22].Therefore,
to parse functional regulatory elements using bioinformatics
requires the analysis of copious amounts of genomic data.

Analyses of time-series data from microarrays can show
the chronological expression of specific genes or groups
of genes. These temporal patterns can be used to infer or
propose causal relationships in gene regulation [23]. Thus,
genes in logical networks can modulate the extent of each
other’s gene expression over the life span of a cell or a
whole organism. Time-series microarray data shed light on
a complex but measurable regulatory system, allowing for a
more precise inference of gene interaction.

Numerous algorithms have been developed for inferring
GRNs [24–27]. In this paper, we present a new approach,
tailored to cloud computing, to infer GRNs using time-series

microarray data. Using time as a variable in the analysis of
GRNs permits the study of changes in cellular phenotype, as
opposed to a snapshot in a limited time frame that may reveal
static interactions but not progression of gene expression
phenomena. The time-series datasets used in this work
come from DREAM4 challenges [28–31] and an Affymetrix
Yeast Genome 2.0 Array downloaded from NCBI’s Gene
ExpressionOmnibus.The array contains 5,744 probe sets and
includes 10,928 Saccharomyces cerevisiae genes with 49 time
points and transcriptional oscillations of about 4 hours.These
oscillations reveal cell redox states, which in turn result from
changes in metabolic fluxes and cell cycle phases [32].

As knowledge in several biological fields leads to an ever-
expanding accumulation in gene expression data, the main
consideration in data processing is that analysis of informa-
tion becomes increasingly time-consuming, thus creating a
demand to speed up the analytical process. In order to obtain
results more expeditiously, we develop information-theoretic
algorithms using MapReduce that run on a distributed,
multinode Apache Hadoop cluster in a cloud environment.
Cloud resources are increasingly more flexible and affordable
compared with local traditional computing resources. Cloud
computing advantages in the field of bioinformatics research
are well known [33–39].

2. Materials and Methods

2.1. Framework. Previous information-theoretic algorithms
for network inference were implemented in the R pro-
gramming language using steady state data [40] and time-
series data [23]. The tool using steady state data is named
ARACNE [40] and the tool using time-series data is named
TimeDelay-ARACNE [23]. ARACNE infers an undirected
network, which basically shows whether two genes are
mutually dependent rather than the regulatory relationship
between the genes. In contrast, TimeDelay-ARACNE infers
a directed network, in which an edge from gene A to gene B
indicates that A regulates the expression of B.

In contrast to the R-based ARACNE and TimeDelay-
ARACNE, our proposed information-theoretic framework
is tailored to the MapReduce programming paradigm. Like
TimeDelay-ARACNE [23], the input of our framework is a
set of time-series gene expression data and the output is an
inferred gene regulatory network. The input dataset contains
𝑚 genes, and each gene has 𝑛 expression values recorded at
n different time points, respectively. Our framework consists
of three steps. Step 1 aims to detect, for each gene 𝑔, the first
time point t (𝑡 > 1) at which a substantial change in the
gene expression of 𝑔 with respect to the gene expression of
𝑔 at time point 1 takes place. This t is referred to as the time
point of Substantial Change of Expression (ScE) of gene 𝑔,
denoted as ScE(𝑔). Step 2 calculates, for two genes 𝑔𝑥 and 𝑔𝑦,
the influence of 𝑔𝑥 on 𝑔𝑦, denoted as influence(𝑔𝑥, 𝑔𝑦), based
on the ScE values of the genes. Step 3 determines the edges
between genes using their influence values. Below we present
details of the proposed framework.

Step 1 (calculation of ScE). Let 𝑔(𝑡) be the expression value
of gene 𝑔 at time point t. We say 𝑔 is activated (or induced)
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at time point t (𝑡 > 1) if 𝑔(𝑡)/𝑔(1) > 𝜏, where 𝜏 > 1 is a
threshold. We say 𝑔 is inhibited (or repressed) at time point t
(𝑡 > 1) if 𝑔(𝑡)/𝑔(1) < 1/𝜏. For each gene 𝑔, we maintain two
sets of time points: 𝑔+(𝑡) and 𝑔−(𝑡); 𝑔+(𝑡) contains all time
points at which𝑔 is induced and𝑔−(𝑡) contains all time points
at which 𝑔 is repressed. Initially, 𝑔+(𝑡) = ⌀ and 𝑔−(𝑡) = ⌀.
The two sets of time points are then updated as follows. For
each time point t (𝑡 > 1),

if
𝑔 (𝑡)
𝑔 (1)
> 𝜏, then 𝑔+ (𝑡) = 𝑔+ (𝑡) ∪ {𝑡} ,

if
𝑔 (𝑡)
𝑔 (1)
< 1
𝜏
, then 𝑔− (𝑡) = 𝑔− (𝑡) ∪ {𝑡} .

(1)

If 1/𝜏 ≤ 𝑔(𝑡)/𝑔(1) ≤ 𝜏, then 𝑔 is neither induced nor
repressed at time point t. In this case, we simply ignore this
time point t without adding t to 𝑔+(𝑡) or 𝑔−(𝑡). The value
of 𝜏 used in this study is set to 1.2. With this threshold
value and datasets used in the study (DREAM4 [28–31]),
there is a significant difference between the mean of the gene
expression values of the time points at which 𝑔 is induced and
the mean of the gene expression values of the time points at
which 𝑔 is repressed according to Student’s 𝑡-test (𝑝 < 0.05).

Let ScE(𝑔) represent the first time point t (𝑡 > 1) at which
𝑔 is either induced or repressed; that is,

ScE (𝑔) = min {𝑔+ (𝑡) ∪ 𝑔− (𝑡)} . (2)

For any two genes 𝑔𝑎 and 𝑔𝑏, there are three cases to be
considered.

Case 1 (ScE(𝑔𝑎) < ScE(𝑔𝑏)). We send the ordered pair (𝑔𝑎,
𝑔𝑏) and the expression values of the two genes to Step 2.

Case 2 (ScE(𝑔𝑏) < ScE(𝑔𝑎)). We send the ordered pair (𝑔𝑏,
𝑔𝑎) and the expression values of the two genes to Step 2.

Case 3 (ScE(𝑔𝑎) = ScE(𝑔𝑏)). We send 𝑔𝑎 and 𝑔𝑏 with a tag
indicating that both of the ordered pairs (𝑔𝑎, 𝑔𝑏) and (𝑔𝑏, 𝑔𝑎)
should be considered, together with their gene expression
values, to Step 2.

Step 2 (calculation of influence values). For each pair of genes
(𝑔𝑥, 𝑔𝑦) received from Step 1, we calculate the time-delayed
mutual information [41] between the genes as follows:

𝐼𝑘 (𝑔𝑥, 𝑔
(𝑘)
𝑦 ) = ∑

1≤𝑖≤𝑛−𝑘

𝑝 (𝑔𝑖𝑥, 𝑔
𝑖+𝑘
𝑦 ) log

𝑝 (𝑔𝑖𝑥, 𝑔
𝑖+𝑘
𝑦 )

𝑝 (𝑔𝑖𝑥) 𝑝 (𝑔𝑖+𝑘𝑦 )
, (3)

where 𝑛 is the total number of time points, 𝑝(𝑔𝑖𝑥) is the
marginal distribution of 𝑔𝑖𝑥, and 𝑝(𝑔𝑖𝑥, 𝑔

𝑖+𝑘
𝑦 ) is the joint

distribution of 𝑔𝑖𝑥 and 𝑔
𝑖+𝑘
𝑦 . (In our implementation, a hash

table is used to calculate the joint distribution to save time
and space.) The parameter 𝑘, 1 ≤ 𝑘 ≤ ℎ, represents the
length of delayed time and ℎ is the maximum length of
delayed time. (In the study presented here, ℎ is set to 3.)
The notation 𝑔𝑖𝑥 denotes the gene expression of 𝑔𝑥 at time
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Figure 1: Illustration of how to calculate time-delayed mutual
information.

point 𝑖 and 𝑔𝑖+𝑘𝑦 is the gene expression of 𝑔𝑦 at time point
𝑖+𝑘. Figure 1 illustrates how to calculate time-delayedmutual
information. There are 21 time points in Figure 1. The length
of delayed time is 2 (i.e., 𝑘 = 2). Each rectangle represents the
gene expression value obtained at some time point. Mutual
information of rectangles with the same color is computed.
Then, the influence of 𝑔𝑥 on 𝑔𝑦 is calculated as follows:

influence (𝑔𝑥, 𝑔𝑦) = max
1≤𝑘≤ℎ
{𝐼𝑘 (𝑔𝑥, 𝑔

(𝑘)
𝑦 )} . (4)

Referring to the three cases in Step 1, for Case 1, we calcu-
late influence(𝑔𝑎, 𝑔𝑏) and send (𝑔𝑎, 𝑔𝑏) and influence(𝑔𝑎, 𝑔𝑏)
to Step 3. For Case 2, we calculate influence(𝑔𝑏, 𝑔𝑎) and
send (𝑔𝑏, 𝑔𝑎) and influence(𝑔𝑏, 𝑔𝑎) to Step 3. For Case 3, if
influence(𝑔𝑎, 𝑔𝑏) ≥ influence(𝑔𝑏, 𝑔𝑎), then we send (𝑔𝑎, 𝑔𝑏)
and influence(𝑔𝑎, 𝑔𝑏) to Step 3; otherwise, we send (𝑔𝑏, 𝑔𝑎)
and influence(𝑔𝑏, 𝑔𝑎) to Step 3.

Step 3 (determination of edges between genes). Let 𝜀 be a
threshold. For each pair (𝑔𝑥, 𝑔𝑦) received from Step 2, if
influence(𝑔𝑥, 𝑔𝑦) > 𝜀, then we create an edge from 𝑔𝑥 to 𝑔𝑦
indicating that 𝑔𝑥 substantially influences 𝑔𝑦 or 𝑔𝑥 regulates
the expression of 𝑔𝑦; that is, there is a predicted present edge
from 𝑔𝑥 to 𝑔𝑦. If influence(𝑔𝑥, 𝑔𝑦) ≤ 𝜀, then we do not create
an edge from 𝑔𝑥 to 𝑔𝑦; that is, there is a predicted absent
edge from 𝑔𝑥 to 𝑔𝑦. With the predicted present and absent
edges, we are able to infer or reconstruct a gene regulatory
network. The value of 𝜀 used in this study is set to 0.96. With
this threshold value and datasets used in the study (DREAM4
[28–31]), there is a significant difference between the mean of
the influence values of the predicted present edges and the
mean of the influence values of the predicted absent edges
according to Student’s 𝑡-test (𝑝 < 0.05).
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Figure 2: Conceptual description of the Hadoop MapReduce
implementation of our proposed algorithms.

2.2. MapReduce Algorithms. Figure 2 presents a high-level
conceptual description of the Hadoop MapReduce imple-
mentation of our proposed framework. The system includes
a driver and one or more mappers and reducers. The driver
takes the input from the user, including the locations of
input and output files, as well as algorithm parameters and
thresholds.Thedriver prepares a jobwith the required config-
uration, sends the job to Hadoop to start it, and calculates the
time that the job takes to be completed.Themappers are user-
defined programs (UDPs), which prepare data and perform
calculations, if needed, and then send the processed data
(key-value pairs) to the reducers.The reducers are also UDPs,
which perform the final processing and write the results into
the output file. Hadoop optimizes the number of mappers for
a job. The user can control the number of reducers needed
for completing the job. The Hadoop distributed file system
(HDFS) is a global repository for storage of the input flat
file (in plain text format) with gene expression data and the
output file with an inferred gene regulatory network.

Each gene has an identifier. (We use 𝑔𝑥 to represent both
a gene and its identifier when the context is clear.) Each line
in the input file contains a pair of genes and their expression
values. Genes are sorted based on their identifiers. Each pair
of genes 𝑔𝑥, 𝑔𝑦 occurs in the input file only once; specifically,
the gene pair in which the identifier of 𝑔𝑥 is less than the
identifier of 𝑔𝑦 occurs in the input file. Suppose there are 𝑚
genes. There are (𝑚 × 𝑚 − 1)/2 lines in the input file.

We develop fourMapReduce algorithms, namedM0, M1,
M2, and M3, respectively. These algorithms differ in which
steps, as described in Section 2.1, are performed by mappers.

AlgorithmM0. In this algorithm,mappers perform zero steps.
Reducers have to do Steps 1, 2, and 3. In the key-value pairs
transmitted between mappers and reducers, the key is a pair
of genes, and the value contains the expression profiles of the
genes.

Algorithm M1. In this algorithm, mappers perform Step 1.
Reducers have to do Steps 2 and 3. In the key-value pairs
transmitted between mappers and reducers, the key is a pair
of genes and the value contains the expression profiles of the
genes. Part of the value is a tag indicating which case in Step 1
applies to the pair of genes.

Algorithm M2. In this algorithm, mappers have to do Steps 1
and 2. Reducers perform Step 3. In the key-value pairs trans-
mitted between mappers and reducers, the key is an ordered
pair of genes (𝑔𝑥, 𝑔𝑦) and the value is influence(𝑔𝑥, 𝑔𝑦).

Algorithm M3. In this algorithm, mappers have to do Steps
1, 2, and 3. Reducers perform zero steps. In the key-value
pairs transmitted between mappers and reducers, the key is
the edge 𝑔𝑥 → 𝑔𝑦 and the value is the influence of 𝑔𝑥 on 𝑔𝑦
that exceeds the threshold 𝜀.

The time needed by mappers is bounded by 𝑂(𝑚2/𝑀)
and the time needed by reducers is bounded by 𝑂(𝑚2/𝑅),
wherem is the number of genes,M is the number ofmappers,
and R is the number of reducers. Thus, the time complexity
of our MapReduce algorithms is 𝑂(𝑚2/𝑀) + 𝑂(𝑚2/𝑅). Note
that this is a very pessimistic upper bound since reducers
often work in parallel with mappers, and hence the actual
time needed by the algorithms is much less. Note also that,
in practice, M > R, and hence the time complexity of our
algorithms is bounded by 𝑂(𝑚2/𝑅).

3. Results and Discussion

3.1. Experimental Results. The four algorithms described in
Section 2.2 were implemented in MapReduce and Java on
a Hadoop infrastructure (cloud), which is a virtual envi-
ronment based on VMware Big Data Extensions (BDE).
The infrastructure hardware cluster associated with BDE is
comprised of two IBM iDataPlex dx360 M4 servers. Each
dx360 M4 server is comprised of two Intel Xeon 2.7GHz E5-
2680 (8-Core) CPUs for a total of 16 cores per server.With the
enabling of hyperthreading, the number of logical processors
is doubled to provide 32 logical processors per server. Each
server has 128GB RAM.

The dataset used in the experiments was GSE30052 [32],
downloaded from the Gene Expression Omnibus (GEO) at
http://www.ncbi.nlm.nih.gov/geo/. This dataset was created
using an Affymetrix Yeast Genome 2.0 Array containing
5,744 probe sets for S. cerevisiae gene expression analysis.The
dataset contains 10,928 genes with 49 time points.The dataset
is split into key-value pairs as described in Section 2.2 and the
input file has (10,928 × 10,927)/2 lines, taking up 26.8GB of
disk space. Hadoop assigns 254 mappers to this dataset. The
default value for the number of reducers is set to 20.

We divided GSE30052 into smaller datasets that were
subsets of GSE30052 with varying numbers of genes. Figure 3
compares the running times of the four MapReduce algo-
rithms described in Section 2.2 for varying dataset sizes. It
can be seen from the figure that all the four algorithms
scale well when the dataset size becomes large (i.e., the
number of genes increases). Algorithm M2 performs the
best. This happens because, with M2, the mappers, working
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Figure 3: Performance comparison of the four MapReduce algo-
rithms.

in parallel, share some workload with the reducers, which
perform a relatively smaller amount of computation while
writing results into the output file. It is worth noting that M2
is better than M3, in which the mappers have to do all the
computation. Algorithm M0 performs the worst. With M0,
the reducers have to do all the calculations and become too
busy to quickly complete the job.

We then fixed the algorithm and used M2 in all subse-
quent experiments. Figure 4 shows running times of the M2
algorithm with 1, 20, and 100 reducers, respectively. It can be
seen that the optimal number of reducers is 20. With this
configuration, the reducers work at their maximum limit.
When there are too many (e.g., 100) reducers, the overhead
is too large, and as a consequence the system is slowed down.
On the other hand, when only one reducer is employed, the
reducer is overloaded and the overall performance of the
system degrades.

Finally, we conducted experiments to compare the
MapReduce implementation of the M2 algorithm running
on the Hadoop cluster (denoted MRC), the MapReduce
implementation of the M2 algorithm running on a stan-
dalone single-node server (denoted as MRS), the Java imple-
mentation of the M2 algorithm running on a single-node
server, and the R implementation of the related time-delayed
mutual information algorithm, TimeDelay-ARACNE [23].
In Figure 5, it can be seen that MRC is highly scalable and
that it outperforms the other three programs. Notably, due
to Hadoop’s overhead, MRS is even slower than the Java
program. The R program is not scalable; its running time
dramatically increases as the dataset becomes large.
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the M2 algorithm.
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3.2. Discussion. Our information-theoretic algorithms for
inferring gene regulatory networks are implemented in
MapReduce and runon aHadoop cluster. A tool that is closely
related to our work is the TimeDelay-ARACNE program in R
[23], which also infers gene regulatory networks from time-
series gene expression profiles using an information-theoretic
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approach. As shown in Figure 5, the TimeDelay-ARACNE
program in R does not scale well whereas our MapReduce
program is highly scalable when running on the Hadoop
cluster. Furthermore, our MapReduce program differs from
the TimeDelay-ARACNE R program in that our algorithm
is deterministic whereas the R program is implemented
based on a nondeterministic algorithm, specifically Markov
randomfields. For the same dataset and parameter values, the
R program produces different results in different executions.
In contrast, our MapReduce program always produces the
same result, in different executions, for the same dataset.

To evaluate the accuracy of these programs, we adopted
the five time-series gene expression datasets available in the
DREAM4 100-gene in silico network inference challenge
[28–31]. Each dataset contains 10 times series, where each
time series has 21 time points, for 100 genes. Thus, in
each time series, each gene has 21 gene expression values.
Totally, there are 50 time series in the five datasets. Each
time-series dataset is associated with a gold standard file,
where the gold standard represents the ground truth of the
network structure for the time-series data. Each edge in
the gold standard represents a true regulatory relationship
between two genes. Our experimental results showed that
the average accuracy of TimeDelay-ARACNE on the five
datasets is approximately 92.4%.The average accuracy of our
deterministic algorithm (M2) is about 93.1%, which is slightly
better than TimeDelay-ARACNE. It was observed that, in a
dataset, when M2 is better than TimeDelay-ARACNE, it has
a higher accuracy than TimeDelay-ARACNE for every exe-
cution of TimeDelay-ARACNE on the dataset. Furthermore,
our MapReduce program (M2) takes, on average, 20 seconds
to infer a gene regulatory network on a DREAM4 dataset
while the average time used by the TimeDelay-ARACNE R
program is 3,500 seconds.

We also tested different values for the parameters 𝜏, 𝜀,
and the maximum length of delayed time, h, used in the
proposed algorithms. Experimental results showed that the
default values for these parameters (𝜏 = 1.2, 𝜀 = 0.96, and
ℎ = 3) achieve the highest accuracy. When compared with
other parameter values (e.g., the maximum length of delayed
time ℎ = 6, 𝜀 = 0.35, or 𝜏 = 2), the accuracy achieved by
the default parameter values is significantly higher than the
accuracy achieved by the other parameter values according
to Wilcoxon signed rank tests [42] (𝑝 < 0.05).

4. Conclusions

We have presented four MapReduce algorithms for recon-
structing gene regulatory networks from time-seriesmicroar-
ray data using an information-theoretic approach.Our exper-
imental results showed that the algorithm (M2) that uses
mappers to perform a large portion of work and reducers to
perform a relatively small amount of computation achieves
the best performance. This M2 algorithm is faster than
an algorithm in which the mappers have to do all the
computation. Moreover, the M2 algorithm is much faster
than another algorithm in which the reducers have to do all
the computation and become too busy to quickly complete
the job.

When tested onDREAM4 datasets with 100 genes in each
dataset, our MapReduce program (M2) is slightly better than
a closely related R program (TimeDelay-ARACNE [23]) in
terms of accuracy; furthermore, our MapReduce program
is much faster than the existing R program. When tested
on a big dataset (GSE30052 [32]) with 10,928 genes, our
MapReduce programwas found to be highly scalable whereas
the R programwas not (cf. Figure 5). It should be pointed out,
however, that the comparison with the TimeDelay-ARACNE
R program is not completely fair. Our MapReduce program
is based on a parallel algorithm whereas the TimeDelay-
ARACNE R program is based on a sequential algorithm.
Further studywould be needed to investigate parallel versions
of the R program or a new TimeDelay-ARACNE R package
that supports parallelization.

The work presented here shows that distributing highly
parallel tasks in a cloud environment achieves higher perfor-
mance than running the tasks in a standalone or noncloud
environment. In general, cloud computing can provide the
power to integrate the ever-increasing information about the
Three Spaces of gene networks [8] as well as themultipronged
signal transduction pathways traversing these spaces. Com-
prehending systems biology and functional genomics could
eventually contribute to a better grasp of organismal physi-
ology. Thus, the cloud would provide computing power that
is needed as the analysis of multilevel processes becomes
more complicated. Cloud computing will enable genome-
scale network inference as demonstrated in this study.

Epigenetics [43] is an emerging aspect of gene regulation
whose study would require enormous computing capacity.
This type of posttranslational regulation cross talk involves
chemical modifications of DNA and histones in a process
known as chromatin remodeling. The role of genetic and
epigenetic networks in a variety of health conditions is
now coming into view. For example, there are at least 450
different genes associated with intellectual disability and
related cognitive disorders. Some of these genes are involved
in synaptic plasticity and cell signaling whereas others are
epigenetic genes involved in chromatin modifications [44].
Analysis of the interactions across these genes and networks,
as well as finding new mutations, will require the develop-
ment of highly expeditious bioinformatics tools to mine the
anticipated high amounts of data.

Genome-scale metabolic models are becoming essen-
tial in biomedical applications, and researchers are moving
towards building such models [45]. MapReduce algorithms
could become a powerful tool in the analyses of all aspects of
gene networking in the Three Spaces paradigm. In general,
cloud computing could facilitate the handling of the vast
amounts of information (big data) that such analyses require.
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