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Abstract

Adverse space-weather effects can often be traced to solar flares, the prediction of which has drawn significant
research interests. The Helioseismic and Magnetic Imager (HMI) produces full-disk vector magnetograms with
continuous high cadence, while flare prediction efforts utilizing this unprecedented data source are still limited.
Here we report results of flare prediction using physical parameters provided by the Space-weather HMI Active
Region Patches (SHARP) and related data products. We survey X-ray flares that occurred from 2010 May to 2016
December and categorize their source regions into four classes (B, C, M, and X) according to the maximum GOES
magnitude of flares they generated. We then retrieve SHARP-related parameters for each selected region at the
beginning of its flare date to build a database. Finally, we train a machine-learning algorithm, called random forest
(RF), to predict the occurrence of a certain class of flares in a given active region within 24 hr, evaluate the
classifier performance using the 10-fold cross-validation scheme, and characterize the results using standard
performance metrics. Compared to previous works, our experiments indicate that using the HMI parameters and
RF is a valid method for flare forecasting with fairly reasonable prediction performance. To our knowledge, this is
the first time that RF has been used to make multiclass predictions of solar flares. We also find that the total
unsigned quantities of vertical current, current helicity, and flux near the polarity inversion line are among the most
important parameters for classifying flaring regions into different classes.
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1. Introduction

Solar flares and the often associated coronal mass ejections
(CMEs) can severely impact the near-Earth space environment,
causing geomagnetic and particle disturbances with potentially
deleterious technological and societal consequences (Daglis
et al. 2004). Building the space-weather readiness merits
substantial efforts on several fronts, including research,
forecast, and mitigation plan, as recognized by the recently
released U.S. National Space Weather Strategy.

Observational and theoretical research has suggested that
flares and CMEs are powered by magnetic free energy
(difference between potential and nonpotential magnetic
energy) accumulated in the corona and rapidly released by
magnetic reconnection (Priest & Forbes 2002). This buildup
process of coronal free energy is essentially governed by the
structural evolution of magnetic field on the photosphere,
where the plasma dominates and on which the coronal field is
anchored. Thus, although direct measurement of the weak
coronal magnetic field is challenging, structure and evolution
of the photospheric magnetic field, which can be observed and
measured, may provide critical clues to the energy accumula-
tion and triggering mechanisms of flares/CMEs (for a review
see, e.g., Wang & Liu 2015). The static and evolving
photospheric magnetic structural properties of active regions
(ARs) can be characterized by a variety of parameters, such as
size and complexity (described by, e.g., sunspot classification
schemes), vertical electric currents, surface magnetic free
energy, unsigned magnetic flux, integrated Lorentz force,
magnetic shear and gradient, magnetic energy dissipation, and
magnetic helicity injection.

Although substantial efforts have been invested, details
regarding the physical relationship between the flare produc-
tivity and nonpotentiality of ARs as reflected by the above
parameters are still far from being fully understood. Never-
theless, the fundamental magnetic coupling between the
photosphere and the corona has motivated the use of photo-
spheric field parameters for predicting flares, based not on
physical flare models but on various approaches of statistics
and machine learning (see Bloomfield et al. 2012; Barnes et al.
2016, and references therein). In particular, machine learning is
a subfield of computer science that enables algorithms to learn
from the input (training) data and make data-driven predictions.
It automates analytical model building and thus allows hidden
insights to be discovered from data. Most of the previous
studies used parameters derived from the line-of-sight (LOS)
component of the photospheric magnetic field and produced
probability outputs for the occurrence of a certain magnitude
flare in a time period. For example, Gallagher et al. (2002) and
Bloomfield et al. (2012) used the McIntosh sunspot classifica-
tion system and Poisson statistics to estimate probabilities of an
AR to produce flares with different magnitude in 24 hr. Song
et al. (2009) adopted three LOS magnetic parameters and
employed the ordinal logistic regression (OLR) method to yield
1-day flare probabilities. As pointed out by Bloomfield et al.
(2012), the predicted probabilities may need to be converted
into a yes-or-no forecast before the result can be practically
interpreted as “flare imminent” or “flare quiet.” Recognizing
that such a conversion in Song et al. (2009) was accomplished
by manually chosen threshold values, Yuan et al. (2010)
enhanced their results by feeding the obtained probabilities into
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multiple binary classifiers each called a support vector machine
(SVM) to obtain a definite true or false prediction of flares with
different classes.

Compared to the LOS field, the full vector data supply more
information about the photospheric magnetic field structure that
may warrant a better prediction performance; however, efforts
to forecast flares using vector field parameters were restricted,
mainly due to the availability limitation imposed by ground-
based vector magnetic field observations. Leka & Barnes
(2003) first used a small sample of vector magnetograms from
the Mees Solar Observatory and applied a discriminant analysis
to distinguish flare-producing and flare-quiet ARs within a few
hours. Subsequent studies were also made on extending to a
larger number of samples and a prediction time window of 24
hr (Leka & Barnes 2007) and on producing probability forecast
(Barnes et al. 2007). It is notable that since 2010 May, the
Helioseismic and Magnetic Imager (HMI; Schou et al. 2012)
on board the Solar Dynamics Observatory (SDO; Pesnell et al.
2012) has been producing unprecedented photospheric vector
magnetograms with continuous high-cadence (normally 12
minutes), full-disk coverage. One of the key science questions
for the SDO mission is, “When will activity occur, and is it
possible to make accurate and reliable forecasts of space
weather and climate?” Using 4 yr SDO/HMI vector field data
since its launch, Bobra & Couvidat (2015) calculated a number
of magnetic parameters for each AR. The authors chose 13
parameters, most of which can only be derived from vector
data, and achieved good predictive performance with an SVM
method for flares greater than M1.0 class, as defined by the
peak 1–8Å flux measured by the Geostationary Operational
Environmental Satellite (GOES). In a recent work of Nishizuka
et al. (2017), the authors applied a number of machine-learning
algorithms to HMI vector data and also ultraviolet brightenings
and developed prediction models for M - and X-class flares
with high performance. Certainly, more flare forecast studies
using HMI data are desired in order to fully explore their
prediction capability.

In this paper, we attempt to use SDO/HMI vector data to
forecast the maximum magnitude of flares in terms of GOES
classes (i.e., B, C, M, and X) that would occur in a given AR
within 24 hr, with a machine-learning algorithm called random
forest (RF; Breiman 2001), which is based on an ensemble of
CART-like decision tress (Breiman et al. 1984). RF can very
well handle high-dimensional feature space and does not expect
linear features as compared to the OLR method. Also, unlike
SVM that is fundamentally a binary classifier, RF is an inherent
multiclass classifier. Other advantages of RF include being a
highly accurate learning algorithm, no need to pre-process data,
and resistance to overtraining.5 The RF has been successfully
used in science informatics to perform, for example, biological
data analysis (e.g., Laing et al. 2012). There has also been
many successful applications of RF in astronomy, such as
identifying quasars (Breiman et al. 2003), estimating photo-
metric redshifts (Carliles et al. 2010), searching for supernova
(Bailey et al. 2007) and gravitational waves (Hodge 2014), and
autoclassification of astrophysical sources (Farrell et al. 2015).
One method used by Nishizuka et al. (2017) is the extremely
randomized trees (ERT), which is similar to RF (see more
discussions in Section 3). To our knowledge, this is the first

time that RF has been used to make multiclass predictions of
solar flares.
The plan of the paper is as follows. In Section 2, we describe

the predictive parameters and sample selection and also study
the general properties of the samples. In Section 3, we
introduce the RF algorithm and schemes for result validation
and performance evaluation. Major results are presented and
discussed in Section 4, and a summary is given in Section 5.

2. Flare Predictive Parameters and AR Samples

Near the end of 2012, the SDO/HMI team began to release a
data product called Space-weather HMI Active Region Patches
(SHARP; Bobra et al. 2014), with a main goal of facilitating
AR event forecasting. These derivative data, available as the
hmi.sharp data series from the Joint Science Operations
Center (JSOC),6 encompass automatically identified and
tracked ARs in map patches and provide many magnetic
measurements and derived physical parameters via map
quantities and keywords. In mid-2014, a separate data series
cgem.Lorentz was produced based on SHARP data to
include estimations of integrated Lorentz forces (Sun et al.
2014), which can help diagnose dynamic processes of ARs
(Fisher et al. 2012). In total, 25 parameters characterizing AR
magnetic field properties are calculated for selected ARs and
are contained in the above SHARP-related data products. Using
a univariate feature selection algorithm, Bobra & Couvidat
(2015) scored these parameters and suggested the use of the top
13 (listed in Table 1 in the order of their rankings) as predictors
for flaring activity.
The machine-learning technique relies on training samples.

For this study, we surveyed flares that occurred in a ∼6.5 yr
period (from the SDO launch time in 2010 May to 2016
December) covering the main peak of solar cycle 24, using the
GOES X-ray flare catalogs7 prepared by the National Centers
for Environment Information (NCEI; formerly the National
Geophysical Data Center). These catalogs are constructed by
merging the monthly GOES X-ray flare listings (providing
information of flare time and peak magnitude in 1–8Å soft
X-ray flux, source AR, etc.) with the associated Hα flare
listings (providing information of flare time, location, source
AR, etc.) from the USAF Solar Observing Optical Network
(Denig et al. 2012). We then built a database of flare-producing
ARs in the following way: (1) We used a four-class (i.e., B, C,
M, and X) AR classification scheme (e.g., Song et al. 2009;
Yuan et al. 2010), which is determined based on the maximum
GOES-class flare(s) an AR ever produces. This means that an
AR classified into a certain class produces at least one flare
with such GOES class but no flares with higher GOES class.
Note that the B class is the lowest flare class listed in the NCEI
catalogs. (2) We only selected C-, M-, and X-class ARs with
records of flares that have identified locations in the NCEI flare
catalogs and occur within about 70  of the central meridian
(for the optimum vector field data quality; see Bobra et al.
2014). To maximize the number of B-class AR samples, we
considered all B-class ARs, and for those with no location
information in the NCEI catalogs, we manually checked with

5 http://www.stat.berkeley.edu/~breiman/RandomForests/

6 http://jsoc.stanford.edu/
7 http://www.ngdc.noaa.gov/nndc/struts/results?
t=102827&s=25&d=8,230,9. Note that at the time of the present work, the
2011 flare catalog has no associated AR location information. We thus
recreated it using the IDL procedure xraydatareports.pro by Dr.
William Denig.
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solarmonitor.org. (3) We made sure that valid values of all 13
magnetic parameters of the selected AR samples at the
beginning of the flare day are available from SDO/HMI data
products (see discussions below). The measurement must also
produce reliable Stokes vectors, with the value of the
QUALITY keyword smaller than 65,536 (Bobra et al. 2014).
(4) If an AR produces multiple flares with the same GOES class
on the same day, only one sample corresponding to the last
such flare was recorded; however, if these flares occur on
different dates, the records were treated as different valid

samples. (5) We caution that the NCEI catalogs may contain
errors on the association between flares and their source ARs.
For example, the 2014 October 25 X1.0 flare that peaked at
17:08 UT was located at a major flaring region NOAA AR
12192, but a small quiet region AR 12196 was assigned to this
flare in the catalog. This would negatively affect the training of
the machine-learning algorithm, because the magnetic para-
meter values of the flare-quiet AR 12196 differ significantly
from those of the true X-class flaring regions. Several entries
with such obvious inconsistencies were manually corrected. In

Figure 1. Properties of 845 flaring AR samples. (a) Distribution of flare start time in GOES 1–8Å. B-, C-, M-, and X-class AR samples are denoted as a black square,
blue circle, orange triangle, and red filled circle, respectively. (b) Mean value (with 1σ error bar) of SDO/HMI magnetic parameter normalized to that of the X class
vs. the class of AR samples; see also Table 1.

Table 1
Overview of AR Samples Using SDO/HMI Magnetic Parameters

SHARP RF B Class C Class M Class X Class
Keyworda Formula Unit Importanceb (n = 128) (n = 552) (n = 142) (n = 23)

TOTUSJH H B Jc z ztotal µ å ∣ · ∣ 102G2m−1 37.4 4.8±3.1 13.9±9.9 27.7±18.2 58.3±40.0

TOTBSQ F B2µ å 1010G2 17.9 1.0±0.9 2.6±1.9 4.6±3.0 10.7±8.6
TOTPOT B B dAtot

Obs Pot 2r µ å -( ) 1023ergscm−3 21.1 1.0±1.4 2.7±2.7 6.7±5.7 19.6±18.0

TOTUSJZ J J dAz ztotal = å ∣ ∣ 1012A 50.6 9.5±6.4 30.3±21.4 53.9±30.9 110.0±73.4

ABSNJZH H B Jc z zabs µ å∣ · ∣ 10G2m−1 19.9 6.1±7.0 14.3±17.0 39.2±43.8 91.2±63.6

SAVNCPP J J dA J dAz
B

z
B

zz z
sum µ å + å

+ -∣ ∣ ∣ ∣ 1012A 24.6 2.7±2.7 6.5±6.4 15.8±14.6 33.1±24.0

USFLUX B dAzF = å ∣ ∣ 1021Mx 14.2 7.1±5.5 19.9±14.7 33.7±21.0 72.2±54.2
AREA_ACR Area = å Pixels 102 pixels 23.7 3.0±2.4 8.2±6.1 13.3±7.7 29.2±22.3
TOTFZ F B B B dAz x y z

2 2 2µ å + -( ) 1023- dyne 13.9 1.2±1.3 2.7±2.7 3.9±3.7 6.1±6.2

MEANPOT B B
N

1 Obs Pot 2r µ å -( ) 103ergscm−3 19.8 6.5±5.8 5.9±3.7 8.9±4.2 12.1±4.2

R_VALUE B dALOSF = å ∣ ∣ within R mask Mx 31.4 3.2±0.7 3.8±0.6 4.4±0.5 4.9±0.4
EPSZ Fz

B B B

B

x y z
2 2 2

2d µ
å + -

å

( ) 10 1- - 15.4 2.1±1.3 2.0±1.3 1.7±1.2 1.2±1.1

SHRGT45 Area with shear 45> /Total Area L 12.7 0.23±0.17 0.27±0.14 0.34±0.13 0.40±0.11

Notes.
a These 13 SDO/HMI magnetic parameters are ordered according to their rankings by univariate Fisher scores as evaluated by Bobra & Couvidat (2015). Their values
of the 845 AR samples are extracted from HMI SHARP-related data products. The values shown represent mean plus/minus 1σ calculated for each of the four AR
class samples. The meaning of each parameter is as follows: total unsigned current helicity (TOTUSJH), total magnitude of Lorentz force (TOTBSQ), total
photospheric magnetic free energy density (TOTPOT), total unsigned vertical current (TOTUSJZ), absolute value of the net current helicity (ABSNJZH), sum of the
modulus of the net current per polarity (SAVNCPP), total unsigned flux (USFLUX), area of strong field pixels in the active region (AREA_ACR), sum of
z-component of Lorentz force (TOTFZ), mean photospheric magnetic free energy (MEANPOT), sum of flux near the polarity inversion line (R_VALUE), sum of the
z-component of normalized Lorentz force (EPSZ), and fraction of area with shear 45>  (SHRGT45).
b The RF importance values are of the type of mean decrease Gini.
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total, we collected 845 samples, including 23 X-class, 142
M-class, 552 C-class, and 128 B-class ARs (see Table 5 in the
Appendix).

In Figure 1(a) we plot the distribution of the flare start time
in GOES 1–8Å of all the AR samples, which shows a semi-
homogeneous spread within a 24 hr time period. Therefore, in
this study we retrieve the values of the 13 HMI predictive
parameters for each AR in our database8 at the time of the
beginning of its flare date (mostly at 00:12 UT), using the
routine ssw_jsoc_time2data from the SolarSoft package.
Since flares originated from our sample ARs can occur anytime
within a 1-day period as shown above, choosing AR parameter
values measured at the beginning of the flare date for all
samples is in accordance with our objective of predicting flares
within 24 hr.

We further make some exploratory data analyses of our AR
samples. First, we compare the magnitude (mean plus/minus
1σ) of the predictive parameters with AR classes in Table 1 and
Figure 1(b). It appears that ranging from the B to X class,
almost all parameters exhibit a monotonic change of the mean
values, with a Pearson correlation coefficient of ∼0.78–0.98.
This indicates that ARs producing higher GOES class flares
tend to possess larger values of these physical parameters.
However, it is also clear that these property values of ARs with
different classes could overlap with each other significantly, as
the fluctuations in many cases are almost comparable with the
means. Thus, it is impractical to forecast flares with multiple
classes simply based on magnitudes of these quantities.
Second, we analyze the correlations ρ among the magnetic
parameters and AR classes using Spearman’s rank correlation
method. The result in Table 2 shows that the AR class is
strongly correlated with 9 out of 13 magnetic parameters (with

0.6r ), while it is weakly correlated with the remaining four
parameters (with 0.4 0.2 r∣ ∣ ). This implies that these
parameters could potentially have good classifying capability
of ARs. We also note that there are strong correlations between
some parameters, such as TOTUSJH and TOTUSJZ; never-
theless, predicting variables with a high correlation still could
be complementary features (e.g., Guyon & Elisseeff 2003).

3. Methodology

We resort to RF, an inherent multiclass classifier, to perform
flare prediction. RF is a general term for the random decision
forests, an ensemble learning technique mainly for classifica-
tion and regression tasks (Breiman 2001). In the training phase,
it constructs a collection of decision trees (i.e., tree-like
predictive models), each of which is grown based on training
records selected using the bagging method (i.e., sampling with
replacement) and on randomly selected features when splitting
each node. In the testing phase, an unknown sample is
evaluated by all decision tress, and the RF outputs the class by
majority votes (in the case of classification) or yields the mean
prediction of trees (in the case of regression). Explicitly, the
general scheme of RF operates as follows.

1. Training: Given a training data set D d d, , n1= ¼ with
responses R r r, , n1= ¼ , a total of M trees are grown, each
of which is built using the following algorithm:
(a) Randomly sample, with replacement, n times to form

a training set D R,m m( ).
(b) A decision or regression tree Tm on D R,m m( ) is

trained. At each node split, f variables (predictive
parameters) are randomly sampled, and the best split
is determined based on information gain or the Gini
impurity measure (Gini importance or the mean
decrease Gini). By default, f F= for classification
and f F

3
= for regression, where F is the total number

of variables.
2. Testing/validation: For an unknown sample data record

d¢, forecasting can be made by taking the majority vote
for classification decision trees, or can be given by

T d
M m

M
m

1
1å ¢= ( ) for regression trees.

For our flare prediction, we run RF in the classification mode.
In the training phase, each input training sample contains the 13
SHARP parameter values of an AR and its corresponding
maximum GOES flare class. In the testing/validation phase, the
13 SHARP parameters of an AR sample are used as the model
input, and the RF classifier predicts the maximum GOES class
of this AR. We note that the ERT method used by Nishizuka
et al. (2017) randomizes, rather than optimizes (as RF does) the
splits on trees. A full comparison of these two algorithms is
beyond the scope of this paper (see Geurts et al. 2006).

Table 2
Spearman Correlation Coefficients ρ among AR Class and 13 SDO/HMI Magnetic Parameters

TOT TOT TOT TOT ABS SAVN US AREA TOT MEAN R_ SHR
USJH BSQ POT USJZ NJZH CPP FLUX _ACR FZ POT VALUE EPSZ GT45

TOTUSJH 1 0.95 0.93 0.99 0.69 0.75 0.96 0.94 0.64 0.51 0.9 −0.11 0.42
TOTBSQ 0.95 1 0.94 0.93 0.61 0.67 0.97 0.93 0.7 0.53 0.84 −0.08 0.38
TOTPOT 0.93 0.94 1 0.91 0.66 0.68 0.9 0.89 0.53 0.74 0.88 −0.26 0.63
TOTUSJZ 0.99 0.93 0.91 1 0.67 0.74 0.96 0.94 0.61 0.46 0.86 −0.13 0.42
ABSNJZH 0.69 0.61 0.66 0.67 1 0.86 0.6 0.6 0.31 0.5 0.68 −0.21 0.44
SAVNCPP 0.75 0.67 0.68 0.74 0.86 1 0.67 0.69 0.38 0.43 0.72 −0.17 0.37
USFLUX 0.96 0.97 0.9 0.96 0.6 0.67 1 0.92 0.76 0.42 0.83 0.03 0.29
AREA_ACR 0.94 0.93 0.89 0.94 0.6 0.69 0.92 1 0.55 0.48 0.79 −0.22 0.4
TOTFZ 0.64 0.7 0.53 0.61 0.31 0.38 0.76 0.55 1 0.01 0.53 0.61 −0.18
MEANPOT 0.51 0.53 0.74 0.46 0.5 0.43 0.42 0.48 0.04 1 0.63 −0.52 0.86
R_VALUE 0.9 0.84 0.88 0.86 0.68 0.72 0.83 0.79 0.53 0.63 1 −0.16 0.51
EPSZ −0.11 −0.08 −0.26 −0.13 −0.21 −0.17 0.03 −0.22 0.61 −0.52 −0.16 1 −0.68
SHRGT45 0.42 0.38 0.63 0.42 0.44 0.37 0.29 0.4 −0.18 0.86 0.51 −0.68 1
AR Class 0.74 0.68 0.67 0.74 0.59 0.64 0.68 0.68 0.4 0.39 0.71 −0.16 0.33

8 The complete data set and also the source code for the main experiment in
Section 4.2 can be found at https://web.njit.edu/~cl45/Fpredict/.
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It can be noticed that in our database there are more C-class
AR samples (552) while fewer X-class samples (23), compared
to M-class (142) and B-class (128) samples. In order to
alleviate the class-imbalance issue that poses a major challenge
in machine learning (e.g., Japkowicz & Stephen 2002), we
randomly select 142 unique C-class ARs out of their total of
552 to form a complete data set. To avoid any bias, we repeat
this random selection 100 times, so we end up with 100 data
sets for multiclass classification, each consisting of 128
B-class, 142 C-class, 142 M-class, and 23 X-class AR samples.
We also construct another kind of 100 data sets for binary-class
prediction, so as to facilitate comparisons with previous work.
In doing so, we combine the B and C class (M and X class) to
form the B/C (M/X) class, and we randomly select (for 100
times) 165 unique B/C-class AR samples to couple with the
165 M/X-class samples.

In evaluating the performance of the RF classifier, we apply
the commonly used 10-fold cross-validation (CV) method. For
each data set, we perform a stratified 10-fold partitioning using
the function createFolds in the caret package
(Kuhn 2008) in R.9 That is, we divide all the samples into 10
groups of nearly equal sizes, which have balanced distributions
of AR classes. The prediction function of RF is then trained
using nine folds of data, and the one fold left out is used for
validation. To account for the random error associated with
each 10-fold CV, the CV procedure is repeated 100 times. The
average of the total 104 iterations (100 CVs for each of the 100
data sets for multiclass or binary classification) yields the final
results.

To further characterize the prediction results, we consider a
confusion matrix, a.k.a. a contingency table for each AR class
k. The class k ARs correctly predicted as class k are called true
positives (TP), and in the case of wrong predictions, they are
false negatives (FN). The ARs not in class k correctly predicted
not as class k are true negatives (TN); otherwise, they are false
positives (FP) if predicted as class k. Using these quantities, we
compute a variety of standard performance metrics. They
include recall (a.k.a. sensitive) TP

TP FN
=

+
, precision TP

TP FP
=

+
,

accuracy TP TN

TP FP TN FN
= +

+ + +
, and the true skill statistics (TSS;

Hanssen & Kuipers 1965) defined as

TSS
TP

TP FN

FP

FP TN
. 1=

+
-

+
( )

All these metrics have a value of 1 for perfect forecasts and are
used together for a comprehensive assessment. Because of its
unbiasedness over class-imbalance ratio (Woodcock 1976), we
follow the suggestion of Bloomfield et al. (2012) to mainly use
the TSS score, which is the recall subtracted by the false alarm
rate, when comparing our results with other flare forecasting
studies.

4. Results and Discussions

The RF algorithm was originally written in FORTRAN.5

Here we employ the application of RF using the function
randomForest (Liaw & Wiener 2002) in R. The function
takes in a formula (i.e., combination of predictive parameters)
and a training data set, as well as other optional arguments.

Two important arguments are ntree, which defines the
number of trees to be built for the ensemble, and mtry, which
is the number of variables sampled at each node for splitting.
Using one sample data set with the four AR classes (the
selected C-class ARs are marked in Table 5), we tune these
arguments using the tune function in the R package e1071
(Meyer et al. 2017) and find that setting ntree 1000= and
mtry 6= usually produces results with slightly better
accuracy than those computed with the default argument
values (ntree 500= and mtry F 3= = in our case). In
general, the choice of the mtry argument has little impact on
the accuracy of RF predictions (e.g., Liaw &Wiener 2002). For
demonstration purposes, a sample representative RF tree,
created using the R package reprtree,10 is portrayed in
Figure 3 in the Appendix.

4.1. Parameter Importance

As suggested by Bobra & Couvidat (2015), the 13 SDO/HMI
magnetic parameters listed in Table 1 are most useful for
discriminating flaring from nonflaring ARs. A natural question
is, what is the relative importance of these parameters in
classifying flaring ARs into B, M, C, and X class? An advantage
of the RF method is that it can rank the importance of predictive
variables by measuring their impacts on accuracy or Gini impurity
when splitting nodes (Breiman 2001). A larger value of Gini
importance means that this particular variable plays a greater role
in partitioning data into the defined classes. Using the same data
set as above, the randomForest function generates the Gini
importance (mean decrease Gini) of the magnetic parameters as
illustrated in Figure 2(a) and also listed in Table 1. The result
shows that the order of parameter importance is generally
consistent with the correlations of parameters with the AR class
(Table 2), with the total unsigned vertical current (TOTUSJZ), the
total unsigned current helicity (TOTUSJH), and the total unsigned
flux around high-gradient AR polarity inversion lines (R_VALUE)
being among the most important parameters. We caution that due
to the randomness associated with RF (random trees and randomly
sampled predictors at each node), different iterations may produce
different results, but the order of the most important predictors
remains relatively stable. In any case, the parameter rank
determined by Gini importance in RF only roughly agrees with
that determined by the univariate Fisher score (Bobra &
Couvidat 2015). Figure 2(b) presents a scatter plot of these two
quantities for the 13 parameters, showing a weak to moderate
Pearson correlation with a coefficient of ∼0.42. One parameter of
interest is R_VALUE, which has a relatively low univariate score
but a quite high Gini importance. The R_VALUE parameter was
shown to be effective in forecasting major flares (Schrijver 2007;
Welsch et al. 2009). Our result supports this view and connotes
that it could also help classifying flaring ARs into different classes.
Lastly, we reiterate that the Gini importance derived here is for the
purpose of classifying multiclass ARs, different from that of the
univariate score of Bobra & Couvidat (2015), which is to
distinguish between flaring and nonflaring ARs.
Based on the variable importance, the function rfcv in the

randomForest package can perform automatic variable
selections, by sequentially removing the least important
variable(s) and performing the nested cross-validated model
prediction. We show in Figures 2(c) and (d) the error of 10-fold
CV (repeated 100 times) and the averaged correct classification9 R is a software environment (R Core Team 2016) for statistical computing

(James et al. 2013), with wide real-world applications in many fields, such as
data mining (Zhao & Cen 2013). 10 https://github.com/araastat/reprtree
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rate, respectively, against the number of SDO/HMI parameters
used at each step. It suggests that the optimal model, with an
error rate of ∼0.34 and an equivalent overall correct
classification rate of ∼66%, can be achieved for this data set
when all 13 variables are used. Similar results are obtained
when using other multiclass data sets we constructed. Thus, no
further feature selection is carried out, and below we use all 13
SDO/HMI parameters as input variables of the RF model.

4.2. Flare Prediction Using 13 SDO/HMI Parameters and RF

In this subsection, we describe the flare prediction results using
the RF algorithm and compare with previous studies of flare
forecasting for a 24 hr time interval. Using different kinds of
flaring AR data sets that we prepared, we carry out two
experiments, the main one8 for multiclass classification (i.e.,
B-, C-, M-, and X-class ARs) and an additional one for binary
classification (i.e., B/C- and M/X-class ARs). The latter is
analogous to forecasting flares larger than a certain class (here
M1.0 class), which is the approach of most previous studies. For
each experiment, as we described earlier, we obtain the final results
based on the average of 100 times 10-fold CVs on each of the 100

AR samples. The TSS score is used as the standard measure for
result comparison, while other metrics are also considered.
First, we apply RF to predict flaring ARs with four different

classes. Detailed results including a confusion matrix and model
performance metrics are presented in Table 3. It can be seen that
the RF method works reasonably well in terms of recall, precision,
and accuracy, except for a low recall of X-class (∼0.30). A closer
look reveals that the RF has difficulties in distinguishing X- from
M-class AR samples. This is presumably due to the sparsity of the
current X-class samples available for training, as solar cycle 24
contemporaneous with SDO/HMI measurements is unusually
quiet compared to previous cycles. Nevertheless, our TSS scores
(about 0.67 for B class, 0.33 for C class, 0.50 for M class, and 0.29
for X class) outperform Yuan et al. (2010) in every AR class; in
particular, we obtain a ∼10 times higher TSS score for the M
class. Compared to Bloomfield et al. (2012), which used solar
cycle 21 and 22 observations for training, our TSS scores of the C
and M classes are roughly similar, while that of the X-class is∼2.5
times lower. However, it can be noted that the precision of X class
of Bloomfield et al. (2012) is very low (due to a large number of
FP counts), about 26 times lower than ours, while at the mean
time, their recall of the X-class is only about 3 times better. We

Figure 2. Magnetic parameter importance. (a) Gini importance of the 13 SDO/HMI magnetic parameters for predicting flaring AR classes using the RF method. (b)
Univariate Fisher score calculated by Bobra & Couvidat (2015) vs. Gini importance from RF. The Pearson correlation coefficient is 0.42. The dashed line is a linear fit
to the data. (c) 10-fold CV error vs. number of parameters used, showing the result from each of 100 iterations (black dotted line) and average of the 100 iterations (red
thick line). (d) Averaged correct classification rate vs. number of parameters used, based on 100 iterations of the 10-fold CV.
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recognize that recall is a very important metric, especially for the
most energetic X-class ARs/flares, as a miss is usually deemed
worse than a false alarm. It could be expected that provided with
more X-class training samples, our method may yield improved
recall performance while maintaining a high-precision prediction
for X-class ARs.

Second, we make binary predictions and show the confusion
matrix and performance metrics in Table 4. We also compare
our results with previous works on forecasting flares larger than
the M1.0 class. By looking at the TSS score, it is apparent that
the performance of our method coupling SDO/HMI magnetic
parameters with RF (TSS≈0.53) is very similar to Bloomfield
et al. (2012) and Ahmed et al. (2013), while being ∼28% lower
than Bobra & Couvidat (2015) and Nishizuka et al. (2017).
Nonetheless, we obtain quite high scores in both recall and
precision. We note that Nishizuka et al. (2017) used the ERT
classifier similar to RF, and also considered, besides magnetic
field parameters, UV brightenings and previous flare activity to
achieve high metric scores.

It is worth noting that all our training AR samples are flare
productive, with the AR classes defined in the same way as
Yuan et al. (2010) (see Section 2). Many previous studies (e.g.,
Ahmed et al. 2013; Bobra & Couvidat 2015; Nishizuka et al.
2017) include nonflaring ARs as negative samples. This
difference in building data sets with multiple classes may
affect the performance comparisons. For example, the database
for our binary classification is constructed from multiclass AR
samples. As a result, the RF classifier actually works to
distinguish M/X-class ARs from B/C-class ARs (∼80% are
C-class ARs in our data sets). Thus, intuitively, including
nonflaring AR samples might facilitate/improve our prediction.
The ideal situation would be to conduct performance
comparisons between different flare forecasting methods from
the same database (Barnes & Leka 2008).

5. Summary and Discussions

Although not based on physical models of flares, solar flare
prediction taking advantage of modern machine-learning techni-
ques has drawn significant attention in recent years. What
distinguishes the present work from previous studies is the use

of prediction parameters from the state-of-the-art SDO/HMI
instrument and the advanced RF algorithm, with the main goal of
multiclass flare forecasting. Based on flare events that occur from
2010 May to 2016 December, we build a database containing
sample ARs that belong to four classes (B, C, M, and X),
stipulated according to the maximum GOES class of flare(s) that

Table 3
RF Multiclass Flare Prediction Results (within 24 hr) Using 13 SDO/HMI Parameters and Comparison to Other Studies

Prediction Observation  B Class (n=128) C Class (n=142) M Class (n=142) X Class (n=23)

B Class 103.980±3.624 33.413±4.287 10.467±1.770 0.000±0.000
C Class 23.187±3.569 74.700±5.685 33.984±3.724 0.884±0.492
M Class 0.833±0.839 33.866±4.259 95.237±3.703 15.296±0.939
X Class 0.000±0.000 0.021±0.144 2.312±1.294 6.819±0.804
Recall: This work 0.812±0.039 0.526±0.050 0.671±0.037 0.297±0.039
Yuan et al. (2010) 0.714 0.138 0.221 0.206
Bloomfield et al. (2012) N/A 0.737 0.693 0.859
Precision: This work 0.703±0.037 0.563±0.054 0.656±0.036 0.745±0.152
Yuan et al. (2010) 0.763 0.529 0.357 0.438
Bloomfield et al. (2012) N/A 0.330 0.136 0.029
Accuracy: This work 0.844±0.017 0.712±0.026 0.778±0.019 0.957±0.005
Yuan et al. (2010) 0.861 0.722 0.652 0.843
Bloomfield et al. (2012) N/A 0.711 0.829 0.881
TSS: This work 0.669±0.039 0.328±0.050 0.500±0.037 0.291±0.039
Yuan et al. (2010) 0.630 0.090 0.054 0.160
Bloomfield et al. (2012) N/A 0.443 0.526 0.740

Note. For Yuan et al. (2010), we use the contingency tables they provide in Figures 3–6. For Bloomfield et al. (2012), we use their Table 4 and also retrieve the
contingency table from the machine-readable data they provide online.

Table 4
RF Binary-class Flare Prediction Results (within 24 hr) Using 13 SDO/HMI

Parameters and Comparison to Other Studies

Prediction Observation  B/C Class (n=165) M/X Class (n=165)

B/C Class 129.536±4.025 41.722±3.370
M/X Class 35.464±4.025 123.278±3.370
Recall: This work 0.785±0.036 0.747±0.030
Bloomfield et al. (2012) N/A 0.704
Ahmed et al. (2013) N/A 0.523
Bobra & Couvidat (2015) N/A 0.832±0.042
Nishizuka et al. (2017) N/A 0.716
Precision: This work 0.756±0.033 0.777±0.033
Bloomfield et al. (2012) N/A 0.146
Ahmed et al. (2013) N/A 0.740
Bobra & Couvidat (2015) N/A 0.417±0.037
Nishizuka et al. (2017) N/A 0.969
Accuracy: This work 0.766±0.023 0.766±0.021
Bloomfield et al. (2012) N/A 0.830
Ahmed et al. (2013) N/A 0.963
Bobra & Couvidat (2015) N/A 0.924±0.007
Nishizuka et al. (2017) N/A 0.990
TSS: This work 0.532±0.036 0.532±0.030
Bloomfield et al. (2012) N/A 0.539
Ahmed et al. (2013) N/A 0.512
Bobra & Couvidat (2015) N/A 0.761±0.039
Nishizuka et al. (2017) N/A 0.71±0.002

Note. The comparison is made between our results and previous works on
forecasting flares larger than M1.0 class. For Bloomfield et al. (2012), we use
their Table 4 and also retrieve the contingency table from the machine-readable
data they provide online. For Ahmed et al. (2013) and Bobra & Couvidat
(2015), we use the results provided by Bobra & Couvidat (2015) in their Table
2. For Nishizuka et al. (2017), we use the contingency table they provide in
Table 3 and only the entries for the ERT method.
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an AR ever produces. We then apply the RF classifier to make
flare predictions in 24 hr, evaluate the model performance using
the 10-fold CV technique, and characterize our results and make
comparisons with previous studies using performance metrics. The
main results are summarized as follows:

1. From the evaluation of variable importance by the RF
algorithm, the 13 SDO/HMI magnetic parameters used by
Bobra & Couvidat (2015) to discriminate flaring and
nonflaring ARs are also helpful in distinguishing flaring
ARs into four different classes, yet the orders of parameter
importance determined from these two approaches only
roughly agree, with a weak to moderate Pearson correlation
of ∼0.42. The three most important parameters for
classifying ARs are TOTUSJZ, TOTUSJH, and R_VALUE.
We surmise that the ranking of one parameter versus
another is not really as significant as using all 13 parameters
in combination.

2. In classifying flaring ARs into multiple classes, we achieve
a TSS score of about 0.70, 0.33, 0.50, and 0.29 for B-, C-,
M-, and X-class ARs, respectively, which clearly outper-
form Yuan et al. (2010), which used the same method for
defining AR samples. Our TSS scores of C and M classes
are roughly comparable to those of Bloomfield et al.
(2012), but that of the X class is ∼2.5 times lower, most
probably due to the lack of X-class training samples in the
solar cycle 24. In forecasting flares larger than M1.0 class,
our method yields a TSS score of ∼0.53, comparable to
Bloomfield et al. (2012) and Ahmed et al. (2013), while
being ∼28% lower than Bobra & Couvidat (2015) and
Nishizuka et al. (2017). In general, we obtain fairly good
scores in recall and precision at the same time.

It should be noted that (1) these result comparisons could be
affected by the fact that the sample classes in the present study are
defined using different criteria from many previous studies, and
we consider flaring ARs only without including non-flaring AR
regions; and (2) to better train the random forest model for the
main objective of multiclass classification, we randomly select
C-class samples from a larger pool to construct training data with
more balanced AR classes. Indeed, if we use the originally
obtained 845 AR samples without undersampling the C class, the
resulting TSS scores after 100 times of CVs are 0.411±0.023,
0.366±0.011, 0.341±0.021, and 0.268±0.025 for the B, C,
M, and X class, respectively, much inferior to those in Table 3
except for the C class. Then the question is whether the model
developed with the undersampled C-class data can perform
equally well for test data with original class ratios. To answer this,
we revise the main experiment in Section 4.2 as follows. After

randomly selecting 142 unique C-class ARs from the total of 552
C-class samples to form a complete data set with samples in other
classes, we keep the leftover 410 C-class samples; when carrying
out the 10-fold CVs, the data for validation also includes one fold
from the 410 C-class data. In doing so, we build the model with
undersampled C-class data (same as the previous main experi-
ment) but validate it using data that reflect the original class ratios.
The TSS scores obtained this way are 0.620±0.039,
0.333±0.028, 0.463±0.036, and 0.294±0.039 for the B, C,
M, and X class, respectively, very similar to those in Table 3 (with
difference only up to ∼7%). All these show that for this study,
using data with more balanced classes can help build the optimal
model, which can also perform well in an operational setting.
Based on all our experiments, we conclude that using SDO/

HMI magnetic parameters and the RF algorithm is a valid method
for flare forecasting. Importantly, incorporating other features of
flaring ARs, such as previous flare activity, could be critical in
improving the prediction performance (Nishizuka et al. 2017).
Extended studies should also be made on multiclass flare
forecasting using ERT, as it could be more computationally
efficient and robust compared to RF. Related to multiclass
classification, it will also be interesting to find out the most useful
parameter for predicting a certain flare class. Another possible
future work is to calculate the flare index (Abramenko 2005) for
each AR, which can reflect the overall flare productivity by taking
into account the numbers of flares of different GOES classes
within a certain time period; then the RF/ERT classifier can be
run in the regression mode to predict the flare index quantitatively.
More generally, as solar data from various instruments are
growing rapidly, including such as those from SDO and the
recently digitized historical ground-based Hα images covering
many solar cycles (Liu et al. 2010), the RF/ERT algorithms may
be helpful in solving other multiclass problems in solar physics.

We thank the team of SDO/HMI for producing vector magnetic
field data products and the anonymous referee for valuable
comments that helped us improve this work. The “X-ray Flare”
data set was prepared by and made available through NOAA
NCEI. R software and the packages used are available from CRAN
(http://cran.fr.r-project.org/). C.L., N.D., and H.W. acknowledge
NASA grant NNX16AD67G for support of efforts related to solar
big data processing.
Facility: SDO (HMI).

Appendix

In Table 5, we provide the list of 845 samples used for this
study, which includes 23 X-class, 142 M-class, 552 C-class,

Figure 3. Sample representative tree grown by the RF algorithm.
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Table 5
845 Samples of Flaring ARs

Start Time NOAA GOES Start Time NOAA GOES Start Time NOAA GOES
YY/MM/DD UT AR Class YY/MM/DD UT AR Class YY/MM/DD UT AR Class

11/02/15 01:44 11158 X2.2 11/03/09 23:13 11166 X1.5 11/09/06 22:12 11283 X2.1
11/09/07 22:32 11283 X1.8 11/09/24 09:21 11302 X1.9 12/03/05 02:30 11429 X1.1
12/03/07 00:02 11429 X5.4 12/07/12 15:37 11520 X1.4 13/05/15 01:25 11748 X1.2
13/10/28 01:41 11875 X1.0 13/11/05 22:07 11890 X3.3 13/11/08 04:20 11890 X1.1
13/11/10 05:08 11890 X1.1 13/11/19 10:14 11893 X1.0 14/01/07 18:04 11944 X1.2
14/03/29 17:35 12017 X1.0 14/10/22 14:02 12192 X1.6 14/10/25 16:55 12192 X1.0
14/10/26 10:04 12192 X2.0 14/10/27 14:12 12192 X2.0 14/10/24 21:07 12192 X3.1
14/11/07 16:53 12205 X1.6 15/03/11 16:11 12297 X2.2 10/05/05 17:13 11069 M1.2
10/06/12 00:30 11081 M2.0 10/08/07 17:55 11093 M1.0 10/10/16 19:07 11112 M2.9
10/11/06 15:27 11121 M5.4 11/03/07 09:14 11164 M1.8 11/03/07 19:43 11165 M3.7
11/03/14 19:30 11169 M4.2 11/03/24 12:01 11176 M1.0 11/06/07 06:16 11226 M2.5
11/07/27 15:48 11260 M1.1 11/08/03 03:08 11261 M1.1 11/08/04 03:41 11261 M9.3
11/09/23 01:47 11295 M1.6 11/09/30 18:55 11305 M1.0 11/10/01 08:56 11305 M1.2
11/10/02 00:37 11305 M3.9 11/12/25 18:11 11380 M4.0 11/12/26 02:13 11380 M1.5
12/02/06 19:31 11410 M1.0 12/03/14 15:08 11432 M2.8 12/03/15 07:23 11432 M1.8
12/03/17 20:32 11434 M1.4 12/04/27 08:15 11466 M1.0 12/05/07 14:03 11471 M1.9
12/05/08 13:02 11476 M1.4 12/05/09 14:02 11476 M1.8 12/05/10 04:11 11476 M5.7
12/05/06 17:41 11476 M1.3 12/06/06 19:54 11494 M2.1 12/06/14 12:52 11504 M1.9
12/07/04 16:33 11513 M1.8 12/07/06 13:26 11513 M1.2 12/07/02 19:59 11515 M3.8
12/07/04 14:35 11515 M1.3 12/07/05 20:09 11515 M1.6 12/07/06 18:48 11515 M1.3
12/07/07 10:57 11515 M2.6 12/07/29 06:15 11532 M2.3 12/07/30 15:39 11532 M1.1
12/07/28 20:44 11532 M6.1 12/08/18 00:24 11543 M5.5 12/09/09 21:50 11564 M1.2
12/11/20 19:21 11618 M1.6 12/11/21 06:45 11618 M1.4 12/11/27 21:05 11620 M1.0
12/11/28 21:20 11620 M2.2 13/01/11 14:51 11654 M1.0 13/02/17 15:45 11675 M1.9
13/03/05 07:47 11686 M1.2 13/03/15 05:46 11692 M1.1 13/04/11 06:55 11719 M6.5
13/05/02 04:58 11731 M1.1 13/05/03 16:39 11731 M1.3 13/05/05 17:42 11734 M1.4
13/05/31 19:52 11760 M1.0 13/06/05 08:14 11762 M1.3 13/06/23 20:48 11778 M2.9
13/08/12 10:21 11817 M1.5 13/08/17 18:49 11818 M1.4 13/10/24 10:30 11877 M3.5
13/10/28 04:32 11877 M5.1 13/10/26 19:49 11882 M1.0 13/10/28 15:07 11882 M4.4
13/10/25 20:54 11882 M1.9 13/11/01 19:46 11884 M6.3 13/11/02 22:13 11884 M1.6
13/11/03 05:16 11884 M4.9 13/11/08 09:22 11891 M2.3 13/11/15 02:20 11899 M1.0
13/11/23 12:49 11899 M1.0 13/12/07 07:17 11909 M1.2 13/12/22 21:23 11928 M1.6
13/12/29 07:49 11936 M3.1 13/12/31 21:45 11936 M6.4 14/01/01 18:40 11936 M9.9
14/01/07 03:49 11946 M1.0 14/02/01 07:14 11967 M3.0 14/02/02 09:24 11967 M4.4
14/02/04 15:25 11967 M1.5 14/02/07 04:47 11967 M2.0 14/02/02 06:24 11968 M2.6
14/02/04 01:16 11968 M3.8 14/02/07 10:25 11968 M1.9 14/02/11 16:34 11974 M1.8
14/02/12 06:54 11974 M2.3 14/02/13 15:45 11974 M1.4 14/02/14 16:33 11974 M1.0
14/02/16 09:20 11977 M1.2 14/02/20 07:26 11982 M3.0 14/02/28 00:44 11991 M1.1
14/03/05 02:06 11991 M1.0 14/03/10 22:45 11996 M1.4 14/03/11 03:44 11996 M3.5
14/03/09 20:13 12002 M1.0 14/03/10 15:21 12002 M1.7 14/04/16 19:54 12035 M1.0
14/06/03 03:58 12077 M1.4 14/06/12 09:23 12085 M1.8 14/06/12 19:56 12089 M1.1
14/07/08 16:06 12113 M6.5 14/10/09 06:48 12182 M1.2 14/12/01 06:26 12222 M1.8
14/12/04 08:00 12222 M1.3 14/12/17 18:54 12241 M1.4 14/12/18 21:41 12241 M6.9
14/12/27 02:03 12249 M2.2 15/01/03 09:40 12253 M1.1 15/01/04 15:18 12253 M1.3
15/01/28 04:21 12268 M1.4 15/01/29 11:32 12268 M2.1 15/01/30 05:29 12277 M1.7
15/02/04 02:08 12277 M1.2 15/02/09 22:19 12280 M2.4 15/04/08 14:37 12320 M1.4
15/05/05 17:12 12335 M2.6 15/06/21 18:10 12367 M1.1 15/06/20 06:28 12371 M1.0
15/06/21 01:02 12371 M2.0 15/06/22 17:39 12371 M6.6 15/06/25 08:02 12371 M7.9
15/07/03 12:47 12378 M1.5 15/07/06 20:32 12381 M1.7 15/08/21 19:10 12403 M1.1
15/08/22 21:19 12403 M3.5 15/08/24 07:26 12403 M5.6 15/08/27 04:48 12403 M2.9
15/08/28 13:04 12403 M2.2 15/09/17 09:34 12415 M1.1 15/09/20 17:32 12415 M2.1
15/10/01 13:03 12422 M4.5 15/10/16 06:11 12434 M1.1 15/10/15 23:27 12434 M1.1
15/10/31 17:48 12443 M1.0 15/11/04 13:31 12443 M3.7 15/11/09 12:49 12449 M3.9
15/12/23 00:23 12473 M4.7 16/02/13 15:16 12497 M1.8 16/02/14 19:18 12497 M1.0
16/02/15 10:41 12497 M1.2 16/04/18 00:14 12529 M6.7 16/11/29 23:29 12615 M1.2
10/07/13 10:43 11087 C2.6 10/08/01 07:55 11092 C3.2 10/09/06 14:54 11105 C2.5*

10/10/27 16:59 11117 C1.2 10/10/31 03:13 11117 C1.8 10/10/26 08:09 11119 C1.0
10/11/15 07:28 11124 C2.3 10/12/14 15:03 11133 C2.3* 11/01/03 23:26 11142 C1.1
11/03/27 23:18 11181 C1.0 11/04/18 18:55 11193 C1.5 11/04/29 20:40 11199 C1.8*

11/05/15 14:11 11208 C1.3 11/05/09 17:31 11210 C1.5 11/06/15 14:19 11234 C3.2
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Table 5
(Continued)

Start Time NOAA GOES Start Time NOAA GOES Start Time NOAA GOES
YY/MM/DD UT AR Class YY/MM/DD UT AR Class YY/MM/DD UT AR Class

11/06/17 23:37 11234 C3.9 11/06/19 16:03 11237 C1.5* 11/07/07 02:31 11243 C1.0
11/07/03 10:54 11244 C2.1 11/07/08 14:56 11247 C2.3* 11/07/11 10:47 11247 C2.6
11/07/12 14:44 11247 C1.9 11/07/18 10:19 11254 C1.0 11/07/30 12:11 11265 C1.3
11/07/31 19:01 11265 C1.7 11/08/09 13:29 11266 C2.2 11/08/05 05:56 11267 C1.3
11/08/06 11:41 11267 C1.3 11/08/07 08:24 11267 C1.6 11/08/18 14:59 11271 C1.1
11/08/20 22:54 11271 C2.9* 11/08/24 16:31 11271 C1.1 11/08/26 03:29 11271 C1.0*

11/08/17 16:16 11272 C2.6 11/08/18 06:40 11272 C1.2 11/08/21 18:15 11272 C1.5
11/08/30 03:06 11274 C1.9 11/09/03 03:19 11280 C1.0 11/08/30 22:02 11281 C5.5
11/09/02 15:09 11281 C1.8* 11/09/03 13:57 11281 C1.0* 11/09/08 18:26 11289 C2.5
11/09/16 22:09 11290 C1.4* 11/09/14 20:42 11297 C9.2 11/09/15 21:09 11297 C2.6*

11/09/16 08:42 11297 C2.2* 11/09/20 06:44 11301 C2.0* 11/09/21 11:17 11301 C3.9
11/10/07 01:14 11313 C1.2* 11/10/10 14:30 11313 C4.5* 11/10/11 23:19 11316 C1.1
11/10/12 09:46 11316 C1.7 11/10/14 15:09 11316 C1.1 11/10/15 18:13 11316 C1.5
11/10/16 13:51 11317 C1.4 11/10/22 15:14 11324 C4.1 11/10/28 11:48 11324 C1.7
11/10/30 09:24 11330 C2.4 11/11/16 23:40 11346 C5.0 11/11/17 07:16 11346 C6.0
11/11/18 16:38 11346 C1.1* 11/11/17 13:53 11352 C3.1 11/11/18 17:07 11354 C2.7*

11/11/19 11:19 11354 C1.4 11/11/20 16:35 11354 C6.1 11/11/22 00:33 11354 C1.2
11/11/26 17:12 11358 C1.0 11/11/27 11:59 11358 C1.1* 11/11/25 21:49 11359 C2.4
11/11/28 18:22 11361 C3.2* 11/11/29 03:25 11361 C2.1 11/12/01 20:27 11361 C1.1
11/12/05 03:09 11361 C1.9 11/11/29 08:54 11362 C2.5* 11/12/05 06:35 11362 C1.4
11/12/03 05:48 11363 C1.2 11/12/05 23:20 11363 C6.9 11/12/07 15:34 11364 C1.3
11/12/09 13:05 11374 C3.1* 11/12/10 23:00 11374 C1.0 11/12/12 08:30 11374 C1.2
11/12/17 22:47 11376 C3.2 11/12/18 04:59 11376 C1.8 11/12/20 22:38 11376 C6.2
11/12/21 20:08 11376 C1.5* 11/12/22 01:56 11381 C5.4* 11/12/27 04:11 11386 C8.9
11/12/28 20:18 11386 C4.0 11/12/31 17:17 11386 C1.2 12/01/10 22:34 11391 C1.7
12/01/13 06:01 11391 C2.2 12/01/08 06:08 11393 C1.9 12/01/09 10:31 11393 C1.1*

12/01/10 01:49 11393 C1.0 12/01/09 20:01 11395 C2.6 12/01/11 11:04 11395 C1.6
12/01/12 00:49 11395 C1.5* 12/01/14 03:19 11396 C2.1 12/01/19 12:41 11396 C3.2*

12/02/08 21:48 11415 C2.9 12/02/19 08:41 11422 C1.0* 12/03/01 15:10 11423 C3.4
12/03/03 03:01 11427 C1.3 12/03/04 17:24 11427 C3.2 12/03/08 02:49 11428 C7.2*

12/03/10 06:53 11428 C1.9 12/03/21 13:54 11440 C1.2 12/04/04 16:17 11450 C1.2
12/04/05 20:49 11450 C1.5 12/04/18 16:54 11459 C5.2* 12/04/21 20:10 11459 C1.8*

12/04/22 21:05 11459 C1.7 12/04/19 00:00 11460 C1.4 12/04/21 01:27 11460 C2.4*

12/04/23 17:38 11461 C2.0 12/04/18 14:51 11463 C5.9 12/04/19 02:54 11463 C2.9
12/04/20 22:25 11465 C1.4 12/04/22 21:42 11465 C2.4 12/04/27 10:53 11465 C2.4
12/04/27 13:18 11467 C2.0 12/04/28 21:48 11467 C1.1 12/04/27 01:59 11469 C1.0*

12/04/28 08:54 11469 C1.7 12/04/29 14:27 11469 C1.1 12/05/02 20:38 11469 C1.9*

12/05/03 16:39 11469 C2.3 12/05/04 04:48 11469 C1.3 12/05/19 12:04 11479 C1.0
12/05/14 19:22 11483 C1.8 12/05/16 00:14 11484 C1.8* 12/05/23 00:15 11484 C1.2
12/05/24 19:57 11488 C3.9 12/05/27 04:42 11492 C3.1 12/06/12 05:47 11506 C1.0
12/06/11 18:59 11507 C1.5* 12/06/12 16:01 11507 C1.4* 12/06/25 20:55 11512 C1.4
12/06/27 07:57 11512 C3.2 12/06/28 04:45 11512 C4.2* 12/06/29 18:35 11512 C1.1
12/07/27 03:58 11528 C5.0 12/08/01 12:47 11535 C2.3 12/08/03 21:20 11535 C3.0
12/08/04 06:03 11535 C1.3 12/08/09 05:27 11538 C3.2 12/08/08 16:10 11542 C1.9
12/08/09 22:42 11542 C1.4 12/08/10 18:38 11542 C1.4 12/08/11 16:28 11542 C2.0*

12/08/14 22:23 11542 C1.6 12/09/01 19:39 11553 C1.9 12/09/02 13:37 11553 C1.1*

12/08/25 02:24 11554 C1.7 12/08/30 04:48 11554 C1.5 12/08/31 19:45 11560 C8.4
12/09/02 18:00 11560 C5.5* 12/09/03 16:30 11560 C1.3* 12/09/05 16:14 11560 C1.1
12/09/06 03:11 11560 C1.8* 12/09/07 17:05 11562 C1.3 12/09/11 08:25 11567 C1.1
12/09/09 14:51 11568 C1.7* 12/09/11 01:00 11569 C3.5 12/09/25 06:34 11573 C1.0
12/09/20 11:27 11574 C1.0 12/09/25 04:24 11577 C3.6 12/10/10 21:40 11585 C1.5
12/10/17 00:44 11589 C1.1 12/10/19 05:10 11589 C1.9 12/10/23 07:40 11593 C3.0
12/10/19 18:42 11594 C1.7* 12/10/21 02:54 11596 C7.8* 12/10/26 10:23 11596 C1.5
12/11/14 13:35 11611 C4.3 12/11/14 23:33 11613 C1.3 12/11/15 20:14 11613 C1.0*

12/11/14 13:22 11614 C1.3* 12/11/29 11:13 11623 C2.0 12/12/18 16:37 11633 C1.3
12/12/23 05:43 11633 C1.3* 13/01/01 08:47 11640 C1.2 13/01/12 21:57 11652 C3.1
13/01/13 18:30 11652 C2.3 13/01/14 01:15 11652 C6.5 13/01/31 04:30 11663 C1.1
13/02/05 08:12 11669 C6.3* 13/02/06 05:53 11669 C1.0* 13/02/12 17:47 11670 C1.5*

13/03/12 22:42 11689 C3.6 13/03/14 05:45 11691 C2.1 13/03/19 13:50 11695 C1.5*

13/03/13 16:15 11696 C1.4 13/03/15 15:09 11696 C1.0 13/03/16 08:30 11698 C1.5
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Table 5
(Continued)

Start Time NOAA GOES Start Time NOAA GOES Start Time NOAA GOES
YY/MM/DD UT AR Class YY/MM/DD UT AR Class YY/MM/DD UT AR Class

13/04/03 18:34 11711 C1.7 13/04/07 16:49 11713 C1.6 13/04/08 15:42 11714 C1.6
13/04/06 23:31 11718 C1.0 13/04/07 15:55 11718 C3.1 13/04/09 13:28 11718 C1.5
13/04/10 17:56 11718 C3.4* 13/04/11 16:52 11718 C1.0 13/04/13 19:46 11718 C1.4
13/04/10 12:54 11721 C1.2 13/04/11 10:09 11721 C4.2 13/04/15 13:58 11723 C1.3
13/04/16 07:30 11723 C1.3 13/04/20 22:46 11726 C1.3* 13/04/21 19:59 11726 C2.7
13/04/23 23:21 11726 C2.5* 13/04/24 22:39 11726 C1.6 13/04/30 20:43 11730 C2.6
13/05/01 07:23 11730 C5.5* 13/04/29 19:26 11733 C4.0 13/05/05 19:57 11739 C8.3
13/05/06 01:58 11739 C2.4 13/05/10 16:30 11739 C2.5 13/05/11 02:52 11744 C1.3
13/05/17 04:37 11744 C5.0* 13/05/13 21:58 11745 C8.3 13/05/21 10:23 11745 C1.2
13/05/19 21:11 11750 C4.7 13/05/20 00:41 11750 C4.0 13/05/18 06:32 11752 C1.3
13/05/23 12:26 11755 C1.3 13/05/25 20:17 11755 C1.6 13/05/21 22:32 11756 C2.9
13/05/22 19:46 11756 C2.4* 13/05/23 18:41 11756 C3.4 13/05/24 16:31 11756 C2.1*

13/06/10 14:18 11765 C1.9 13/06/19 11:49 11773 C1.5 13/06/22 17:31 11773 C1.5
13/06/17 04:29 11775 C1.0 13/06/18 06:48 11775 C2.2 13/06/19 07:20 11775 C3.5
13/06/20 15:55 11775 C1.4 13/06/24 20:35 11775 C3.0* 13/06/19 16:46 11776 C1.0
13/06/21 18:02 11776 C1.0 13/06/30 16:44 11780 C2.0* 13/06/29 16:01 11781 C1.1
13/07/06 17:31 11784 C1.1 13/07/04 05:20 11785 C3.9* 13/07/05 21:30 11785 C3.5
13/07/06 08:07 11785 C1.0* 13/07/07 12:05 11785 C1.7 13/07/09 13:25 11785 C2.3
13/07/11 09:04 11785 C1.0 13/07/13 05:36 11791 C1.4 13/07/15 16:55 11791 C1.0*

13/07/16 10:10 11791 C1.9* 13/07/17 01:49 11791 C1.1 13/07/20 03:34 11793 C2.1
13/07/21 08:24 11800 C3.1 13/07/24 18:13 11800 C1.0 13/07/25 22:37 11800 C2.1
13/07/27 12:28 11800 C1.0 13/07/28 19:57 11800 C1.6 13/07/30 01:10 11801 C1.1
13/08/21 03:36 11820 C1.3 13/08/22 19:08 11820 C1.5* 13/08/23 06:42 11827 C1.1
13/08/21 07:25 11828 C2.2* 13/08/22 20:23 11828 C1.4 13/09/01 14:16 11834 C1.7
13/09/03 17:26 11834 C1.3 13/08/30 02:04 11836 C8.3* 13/08/31 17:20 11836 C2.6*

13/09/04 21:31 11836 C1.3 13/09/05 19:46 11836 C1.5 13/09/04 08:36 11837 C2.6
13/09/05 21:59 11837 C1.4 13/09/24 22:50 11846 C1.1* 13/09/29 05:11 11850 C1.7
13/10/04 03:17 11856 C2.5* 13/10/07 15:34 11856 C2.3 13/10/10 16:40 11861 C1.3
13/10/11 22:56 11861 C6.3 13/10/12 22:02 11861 C2.9 13/10/13 17:50 11861 C4.5*

13/10/14 22:49 11861 C7.4 13/10/15 17:04 11861 C1.8* 13/10/17 11:47 11861 C4.8
13/10/20 18:09 11873 C1.7* 13/11/08 18:16 11887 C1.1 13/11/05 05:49 11889 C1.6
13/11/06 17:24 11889 C3.0 13/11/14 08:55 11897 C3.0 13/11/15 11:31 11897 C7.5
13/11/16 06:15 11897 C8.6 13/11/17 21:16 11897 C1.5 13/11/18 03:24 11897 C2.8*

13/11/19 00:14 11897 C1.8 13/11/21 09:03 11897 C1.8 13/11/28 09:33 11907 C1.0
13/11/28 19:42 11908 C1.0 13/12/12 03:11 11912 C4.6* 13/12/05 06:38 11916 C1.9
13/12/07 04:30 11916 C3.3* 13/12/11 22:49 11917 C2.7 13/12/12 11:32 11917 C2.3*

13/12/14 11:00 11917 C2.3 13/12/16 08:37 11917 C1.9 13/12/17 21:28 11917 C1.9
13/12/18 05:31 11917 C1.5 13/12/12 22:05 11921 C5.9 13/12/19 07:09 11930 C1.8
13/12/26 06:55 11931 C2.2 14/01/03 18:30 11937 C4.0* 14/01/13 16:03 11952 C1.8
14/01/22 18:57 11955 C1.3 14/02/09 05:12 11975 C2.4 14/02/18 06:19 11976 C1.9
14/02/19 00:31 11976 C1.2* 14/03/02 15:47 11987 C2.5 14/03/13 13:39 12003 C1.7*

14/03/14 05:46 12003 C4.7 14/03/19 11:19 12004 C4.2* 14/03/16 08:06 12005 C2.2
14/03/19 18:41 12010 C2.2 14/03/25 08:05 12010 C1.1 14/03/26 21:20 12010 C1.2
14/03/21 09:51 12013 C2.7 14/04/04 13:34 12021 C8.3* 14/04/02 12:47 12026 C1.2
14/04/03 19:30 12026 C1.0* 14/04/04 03:43 12026 C3.6 14/04/07 13:20 12026 C1.7
14/04/16 08:12 12034 C4.5* 14/04/19 05:55 12034 C1.3 14/04/13 22:11 12036 C1.0
14/04/14 18:14 12036 C1.0 14/04/15 13:22 12036 C1.5 14/04/17 21:50 12036 C3.2
14/04/18 08:03 12036 C4.8 14/04/19 12:47 12044 C1.7* 14/05/02 14:03 12047 C1.4
14/05/03 20:18 12047 C1.8 14/04/28 15:17 12048 C3.4* 14/04/30 06:15 12049 C1.5
14/05/03 16:02 12049 C1.7 14/05/04 15:54 12049 C1.3 14/05/02 20:14 12052 C2.1*

14/05/04 23:07 12053 C1.1 14/05/05 11:57 12053 C1.9 14/05/12 17:56 12060 C1.1*

14/05/14 03:25 12060 C1.6* 14/05/15 14:02 12060 C1.0 14/05/14 12:59 12063 C8.3
14/05/15 05:26 12063 C3.2 14/05/16 20:11 12063 C2.5* 14/05/18 06:11 12063 C3.8
14/05/23 04:51 12065 C1.5 14/05/24 13:30 12065 C1.0 14/05/17 02:34 12066 C3.4
14/05/21 07:09 12066 C1.6* 14/05/22 13:13 12066 C1.4* 14/05/27 18:40 12071 C1.1
14/05/29 04:21 12071 C1.4 14/06/11 02:56 12082 C2.3* 14/06/13 11:57 12082 C2.5
14/06/29 04:38 12096 C1.1* 14/06/28 08:22 12100 C1.1 14/06/30 06:52 12100 C2.2*

14/07/03 03:32 12100 C2.6 14/07/01 10:04 12106 C6.0 14/07/08 03:42 12106 C1.2*

14/07/04 14:30 12108 C4.2 14/07/05 08:28 12108 C1.6 14/07/06 06:55 12108 C3.5
14/07/08 08:52 12108 C4.1* 14/07/04 05:34 12109 C2.4* 14/07/06 08:09 12109 C2.9
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Table 5
(Continued)

Start Time NOAA GOES Start Time NOAA GOES Start Time NOAA GOES
YY/MM/DD UT AR Class YY/MM/DD UT AR Class YY/MM/DD UT AR Class

14/07/07 07:58 12109 C4.3 14/07/09 04:05 12109 C2.2 14/07/11 00:39 12109 C4.6*

14/07/12 07:10 12109 C2.5 14/07/13 09:50 12109 C1.8 14/07/24 01:40 12121 C2.1*

14/07/25 06:57 12121 C2.2 14/07/28 13:56 12125 C2.4 14/07/29 06:01 12126 C1.8
14/08/04 02:44 12134 C2.1* 14/10/04 06:48 12177 C1.0 14/10/04 00:54 12178 C1.7
14/10/05 09:32 12178 C1.0* 14/10/06 15:44 12181 C1.7 14/10/25 07:36 12195 C9.2*

14/10/31 09:19 12201 C2.0* 14/11/01 18:14 12201 C2.3 14/11/02 23:38 12201 C1.9
14/11/03 04:50 12201 C1.4 14/11/08 18:53 12201 C2.3 14/11/11 04:41 12208 C3.4
14/11/12 23:10 12208 C1.5 14/11/13 06:54 12208 C2.2 14/11/14 14:47 12208 C3.1
14/11/22 04:08 12216 C1.7 14/11/24 22:08 12216 C2.5 14/11/27 05:47 12216 C2.8*

14/12/01 00:08 12216 C4.2 14/11/26 06:09 12217 C2.9* 14/12/01 05:11 12217 C1.8
14/12/02 07:58 12217 C5.2* 14/12/03 02:30 12217 C2.4 14/11/25 12:54 12219 C1.1
14/11/26 00:30 12219 C1.7* 14/11/28 20:12 12219 C3.1 14/11/29 08:58 12219 C2.1
14/11/29 22:42 12221 C1.7 14/11/30 17:16 12221 C2.1 14/12/13 10:03 12227 C4.0
14/12/08 17:53 12230 C1.3 14/12/09 23:22 12230 C1.3 14/12/10 02:03 12230 C1.4
14/12/12 03:02 12230 C1.1 14/12/10 17:07 12232 C5.9 14/12/11 08:48 12234 C3.8*

14/12/12 14:35 12234 C4.0* 14/12/21 04:47 12244 C5.4* 14/12/22 10:58 12244 C7.0*

14/12/24 13:20 12245 C2.0 14/12/26 08:54 12248 C2.1* 14/12/28 17:50 12248 C3.3
14/12/29 10:34 12248 C1.4 14/12/29 10:46 12250 C2.6* 14/12/28 21:08 12251 C1.3
14/12/29 03:30 12251 C1.4 14/12/30 06:10 12251 C2.6* 14/12/31 01:50 12251 C1.6
15/01/05 23:07 12251 C4.5* 15/01/04 04:16 12255 C2.1 15/01/12 14:08 12255 C7.1*

15/01/09 05:46 12259 C3.4 15/01/10 04:58 12259 C1.1 15/01/14 10:38 12259 C1.9
15/01/12 15:18 12260 C3.7 15/01/11 23:29 12262 C1.4* 15/01/15 21:49 12262 C1.2
15/01/19 20:41 12266 C3.3 15/01/27 05:43 12273 C2.4 15/01/27 07:13 12275 C2.1*

15/02/06 03:05 12281 C1.1 15/02/09 07:04 12281 C1.7 15/02/11 05:17 12282 C1.0
15/02/12 14:06 12282 C1.0 15/02/18 21:53 12282 C3.5* 15/02/19 00:53 12282 C1.2
15/03/03 06:08 12292 C1.9 15/03/04 10:12 12292 C2.8 15/03/04 13:35 12293 C1.1
15/03/28 13:51 12303 C1.2 15/03/25 13:38 12305 C1.0 15/03/26 19:05 12305 C1.4*

15/04/15 20:13 12321 C7.9 15/04/16 16:16 12321 C1.8 15/04/18 18:09 12321 C2.9
15/04/20 20:40 12321 C2.4* 15/04/23 07:31 12326 C1.5 15/04/24 18:02 12331 C1.0*

15/04/26 11:44 12331 C1.0 15/05/04 02:49 12338 C3.0 15/05/13 05:47 12342 C3.5
15/05/14 18:59 12342 C1.1 15/05/15 22:18 12342 C2.0* 15/05/18 07:27 12349 C1.0
15/05/20 08:05 12349 C1.6* 15/05/21 06:57 12349 C1.1* 15/06/07 10:23 12362 C1.6
15/06/09 19:55 12364 C2.8 15/06/10 00:10 12365 C1.8 15/07/02 13:52 12373 C1.1
15/07/03 04:52 12373 C1.2 15/07/10 16:07 12385 C1.2 15/07/11 18:27 12385 C1.0
15/07/24 17:49 12389 C2.6 15/08/07 18:11 12394 C2.1 15/08/06 19:09 12396 C2.1
15/08/07 22:36 12396 C1.7 15/08/08 14:17 12396 C1.0 15/08/09 07:30 12396 C4.2*

15/08/14 03:00 12401 C1.6 15/08/15 12:02 12401 C1.6 15/08/29 14:01 12405 C1.4
15/08/30 13:29 12405 C1.0 15/09/11 21:30 12414 C1.3 15/09/18 04:22 12418 C2.6
15/10/19 17:41 12436 C1.3* 15/10/21 17:48 12436 C7.7 15/10/28 09:31 12436 C1.9
15/10/20 03:56 12437 C1.2 15/10/26 10:21 12437 C2.2* 15/10/28 08:33 12437 C1.6*

15/11/01 19:36 12441 C1.8 15/11/02 09:50 12441 C7.2 15/11/07 00:15 12448 C3.0
15/11/22 22:39 12454 C2.7 15/11/23 01:09 12454 C8.7* 15/11/22 16:31 12457 C2.0
15/11/30 16:52 12458 C1.0 15/12/01 07:57 12458 C3.6 15/12/02 04:25 12458 C2.2
15/12/06 20:49 12463 C1.1 15/12/07 22:39 12463 C1.0* 15/12/11 16:48 12465 C5.6
15/12/15 21:33 12468 C1.2 15/12/16 08:34 12468 C6.6* 15/12/19 01:59 12468 C3.1
15/12/20 19:22 12468 C2.4 15/12/17 12:22 12470 C1.7* 15/12/18 04:55 12470 C4.6
15/12/21 22:23 12470 C1.1 15/12/23 04:02 12472 C7.5 15/12/24 10:46 12472 C2.0
16/01/15 15:18 12480 C1.7 16/01/20 14:25 12487 C1.3 16/01/28 21:48 12488 C3.3
16/01/29 16:33 12488 C1.2 16/01/27 13:26 12489 C1.1 16/02/02 14:22 12491 C1.2
16/02/08 05:22 12492 C1.6 16/02/12 06:27 12492 C2.1 16/02/04 18:15 12494 C5.2
16/02/05 07:15 12494 C2.9 16/02/06 22:37 12494 C1.5* 16/02/18 21:08 12501 C1.8*

16/02/26 09:43 12506 C1.0 16/02/27 05:44 12506 C3.3 16/03/15 15:32 12521 C1.0
16/04/28 12:46 12535 C1.9 16/05/01 09:14 12539 C2.4 16/05/21 13:55 12546 C1.0*

16/05/24 10:16 12546 C1.3 16/05/26 13:45 12548 C1.0 16/05/30 13:18 12550 C1.0
16/06/09 15:03 12552 C1.1 16/07/07 07:49 12561 C5.1 16/07/17 16:34 12565 C1.0
16/07/18 08:09 12565 C4.4 16/07/19 10:00 12565 C2.2 16/07/20 03:32 12565 C2.5
16/08/07 05:28 12571 C1.3* 16/08/08 20:13 12571 C1.7* 16/08/09 08:47 12574 C2.5
16/08/11 16:32 12574 C2.4 16/08/28 21:25 12583 C1.0 16/08/29 17:33 12583 C1.1
16/09/21 10:23 12593 C1.6 16/09/27 07:33 12597 C1.0* 16/10/12 11:51 12599 C1.1*

10/05/03 21:50 11066 B1.0 10/05/05 16:11 11066 B4.0 10/05/11 08:39 11068 B1.1
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and 128 B-class flaring ARs. The 142 C-class ARs marked
with a star are randomly selected from the 552 C-class AR
samples (see Section 3); together with AR samples of other
classes, they form the data set used in Section 4.1. In Figure 3,
we provide a sample representative tree grown by the RF
algorithm for the multiclass flare prediction.
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Table 5
(Continued)

Start Time NOAA GOES Start Time NOAA GOES Start Time NOAA GOES
YY/MM/DD UT AR Class YY/MM/DD UT AR Class YY/MM/DD UT AR Class

10/06/09 04:36 11078 B5.1 10/07/01 20:54 11084 B1.0 10/07/06 10:02 11086 B1.0
10/08/09 19:50 11095 B1.6 10/08/10 08:48 11096 B1.9 10/08/11 18:43 11098 B1.7
10/08/12 04:16 11098 B1.4 10/08/16 02:20 11098 B3.5 10/08/18 22:17 11100 B3.3
10/08/26 10:47 11101 B2.6 10/08/28 00:44 11101 B1.0 10/08/30 15:15 11102 B1.4
10/09/13 04:29 11106 B2.1 10/09/15 22:20 11106 B5.3 10/09/16 22:29 11106 B4.6
10/09/17 17:32 11106 B2.7 10/09/18 06:18 11106 B4.2 10/09/19 02:47 11106 B2.4
10/10/03 21:43 11111 B1.7 10/10/05 08:51 11111 B2.2 10/10/15 13:03 11113 B1.0
10/10/19 13:19 11113 B5.1 10/10/23 17:29 11115 B3.6 10/11/15 22:25 11126 B8.3
10/11/16 07:10 11126 B3.6 10/11/17 04:35 11126 B7.8 10/11/18 13:03 11126 B2.4
10/11/23 08:59 11127 B1.3 10/11/25 20:59 11127 B1.2 10/11/25 00:46 11128 B1.4
10/12/03 06:51 11131 B5.3 10/12/05 13:02 11131 B2.2 10/12/08 05:05 11131 B1.4
10/12/09 03:17 11131 B1.3 10/12/11 11:14 11131 B4.0 10/12/04 21:11 11132 B5.6
10/12/05 02:05 11132 B2.5 11/01/01 21:52 11140 B8.3 11/01/11 06:06 11146 B1.4
11/01/29 16:27 11150 B1.8 11/02/04 19:30 11152 B6.9 11/02/10 20:49 11156 B5.3
11/02/09 19:57 11157 B2.9 11/03/18 11:40 11173 B3.3 11/04/04 03:07 11180 B8.6
11/04/29 12:44 11200 B6.6 11/05/03 06:20 11200 B6.3 11/04/28 09:15 11202 B6.7
11/05/16 22:11 11214 B3.5 11/05/17 01:04 11214 B3.5 11/05/25 22:25 11223 B3.0
11/05/27 09:50 11223 B4.4 11/06/01 05:01 11229 B7.3 11/06/29 09:47 11242 B5.5
11/07/07 15:49 11245 B3.1 11/07/20 17:51 11259 B5.1 11/08/27 04:42 11275 B8.7
11/09/10 17:16 11291 B8.1 12/04/08 23:34 11451 B4.1 12/05/26 21:26 11490 B5.4
12/05/28 14:09 11490 B6.8 12/12/10 03:32 11630 B4.7 12/12/11 03:02 11630 B5.6
12/12/12 00:02 11630 B5.7 13/02/18 04:23 11673 B4.0 13/02/28 08:24 11680 B4.7
13/02/27 03:25 11682 B8.2 13/03/01 10:11 11682 B6.8 13/03/25 17:43 11704 B4.4
13/05/30 12:58 11757 B9.5 13/06/13 21:06 11768 B3.6 13/08/02 11:08 11806 B9.7
13/08/02 07:57 11807 B5.7 13/07/30 20:59 11808 B8.7 13/08/03 05:48 11810 B3.6
13/08/07 14:42 11810 B4.7 13/09/08 16:29 11838 B4.1 13/09/18 09:51 11847 B4.1
13/10/06 00:16 11857 B8.7 15/02/15 00:46 12283 B9.0 15/04/07 03:32 12318 B8.2
15/05/20 15:02 12351 B5.8 15/07/10 01:21 12384 B7.3 15/07/17 15:53 12387 B5.1
15/08/03 05:37 12391 B5.3 15/08/01 01:14 12393 B8.0 15/08/13 10:30 12400 B5.8
15/09/04 05:13 12409 B4.4 15/09/05 10:06 12409 B2.2 15/09/18 14:34 12419 B6.0
15/10/14 15:46 12432 B7.6 15/11/29 06:55 12459 B6.2 16/01/03 20:20 12476 B4.7
16/01/25 21:54 12490 B4.7 16/02/07 06:55 12495 B7.0 16/02/21 13:00 12505 B5.1
16/03/06 04:58 12512 B7.2 16/03/18 23:03 12519 B6.7 16/03/25 14:55 12526 B6.5
16/03/26 07:19 12526 B1.6 16/03/27 10:28 12526 B1.7 16/03/28 07:52 12526 B3.7
16/04/26 11:37 12536 B5.7 16/04/27 03:47 12536 B7.2 16/04/30 12:10 12536 B5.2
16/06/16 00:20 12553 B3.2 16/06/16 15:17 12555 B3.8 16/06/17 14:00 12555 B1.9
16/07/13 14:40 12562 B4.2 16/08/17 09:56 12576 B3.5 16/08/16 08:08 12578 B8.1
16/08/20 05:51 12578 B4.4 16/08/26 06:50 12581 B6.6 16/09/17 08:08 12592 B1.9
16/09/18 10:41 12592 B6.8 16/10/02 18:53 12598 B3.4 16/10/05 01:10 12598 B5.6
16/10/16 13:29 12602 B3.5 16/11/13 17:29 12610 B1.5 16/11/14 23:37 12610 B1.1
16/11/15 16:53 12610 B4.2 16/11/19 07:10 12611 B1.9 16/11/30 05:22 12614 B3.9
16/12/11 19:16 12617 B1.1 16/12/27 10:04 12621 B1.6

Note. These 845 listed samples include 23 X-class, 142 M-class, 552 C-class, and 128 B-class flaring ARs. The 142 C-class ARs marked with a star are randomly
selected from the 552 C-class AR samples (see Section 3); together with AR samples in other classes, they form a data set for use in Section 4.1.
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