Math 611, Homework \# 1

Math 611, Fall 2013

Show all your work. Due in class on September 10, 2013.

1. Problem 1 (25 points).

For $f(x)=e^{x}$, construct a cubic polynomial $q(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}$ for which

$$
q(0)=f(0), \quad q(1)=f(1), \quad q^{\prime}(0)=f^{\prime}(0), \quad q^{\prime}(1)=f^{\prime}(1) .
$$

Numerically compare it to e^{x} and the Taylor polynomial $T_{3}(x)$ for $0 \leq x \leq 1$. Plot $q(x), f(x)$ and $T_{3}(x)$ versus x on the $x-y$ plane for $0 \leq x \leq 1$.
2. Problem 2 (25 points).

First produce the Taylor polynomial of degrees $1,2,3,4$ for $f(x)=e^{x^{2}}$ with $a=0$ the point of approximation. Then use the Taylor approximation for e^{t} and substitute $t=x^{2}$ to obtain Taylor polynomial approximations for $e^{x^{2}}$. Compare the two results.
3. Problem 3 (20 points).

How large should n be chosen to have

$$
\left|e^{x}-T_{n}(x)\right| \leq 10^{-5}, \quad-1 \leq x \leq 1
$$

?
4. Problem 4 (30 points).

Evaluate

$$
I=\int_{0}^{1} \frac{e^{x}-1}{x} d x
$$

within an accuracy of 10^{-6}.

