Math 611, Homework \# 4
Math 611, Fall 2013
Show all your work. Due in class on October 14, 2013.

1. Problem 1 (20 points).
(a) From (5.39) (page 210) derive

$$
\frac{I-I_{n}}{I-I_{2 n}} \approx 2^{p}
$$

(b) From (5.39) (page 210) derive the computable estimate

$$
\frac{I_{2 n}-I_{n}}{I_{4 n}-I_{2 n}} \approx 2^{p}
$$

From this derive the degree of precision

$$
p=\log \left(\frac{I_{2 n}-I_{n}}{I_{4 n}-I_{2 n}}\right) / \log (2)
$$

2. Problem 2 (80 points).
(a) Use the formula in Problem 1 to identify the appropriate p for both trapezoidal rule and Simpson's rules applied to the integral

$$
\int_{0}^{1} \sqrt{x} d x
$$

You can use the matlab subroutines provided at web.njit.edu/~yyoung/M611/simpson.m and web.njit.edu/~ yyoung/M611/trapezoidal.m.
(b) Use the formula in Problem 1 to identify the appropriate p for both trapezoidal rule and Simpson's rules applied to the integral

$$
\int_{0}^{1} \sin (\sqrt[3]{x}) d x
$$

You can use the matlab subroutines provided at web.njit.edu/~yyoung/M611/simpson.m and web.njit.edu/ ~ yyoung/M611/trapezoidal.m.

