Practice Exam for M611, Fall 2012

1. Many linear systems $A x=b$ are directly written in the form $x=b+M x$ with $A=I-M$. Do a convergence analysis for

$$
x^{(k+1)}=b+M x^{(k)}, \quad k \geq 0
$$

2. Consider the iteration

$$
x^{(k+1)}=b+\alpha\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] x^{(k)}, \quad k=0,1,2, \ldots
$$

where α is a real constant. Find the values of α for which the above iteration converges.
3. Find a and b by minimizing the root-mean-square-error

$$
E=\left[\frac{1}{n} \sum_{j=1}^{n}\left(a+b e^{-x_{j}}-y_{j}\right)^{2}\right]^{1 / 2} .
$$

Find a linear system satisfied by the optimum choice of a and b.
4. Let $A=\left[\begin{array}{cc}5 & -2 \\ -1 & 4\end{array}\right]$. Apply the power method with $z^{(0)}=[1,1]^{T}$. Determine the sequence of $\lambda^{(m)}$ for $m=5$. Is the method convergent to the dominant eigenvalue and the corresponding eigenvector?
5. Consider a general system of linear ODEs with constant coefficients $\frac{d y}{d t}=f(y)=A y$, where A is a constant $n \times n$ matrix. If A is a diagonalizable matrix, then its eigenvectors (for eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$) form a basis in the n-dimensional space. The ODE system with large differences in eigenvalues is called a stiff ODE system. In this case, semi-implicit method or implicit method is preferred to solve the stiff system of linear ODEs. For example, a semi-implicit method can be developed as

$$
y^{(k+1)}=y^{(k)}+\frac{\delta t}{2}\left(f\left(t^{(k)}, y^{(k)}\right)+f\left(t^{(k+1)}, y^{(k+1)}\right)\right)
$$

Apply this method to the equation $y^{\prime}=-\lambda y$ with $\lambda>0$ and examine the stability of the method.
6. Write a pseudo-code to solve the one-dimensional heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+f(x), \quad \text { for } \quad-\pi<x<\pi
$$

with boundary conditions $u(-\pi)=0=u(\pi)$ and initial condition $u(x, t=0)=g(x)$.

