Practice Exam for M611, Fall 2012

1. Many linear systems Az = b are directly written in the form x = b+ Mz with A = [ — M.
Do a convergence analysis for
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2. Consider the iteration
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where « is a real constant. Find the values of a for which the above iteration converges.

3. Find a and b by minimizing the root-mean-square-error
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Find a linear system satisfied by the optimum choice of a and b.

4. Let A = [ o 2 ] . Apply the power method with z(® = [1,1]7. Determine the
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sequence of A\™ for m = 5. Is the method convergent to the dominant eigenvalue and the
corresponding eigenvector?

5. Consider a general system of linear ODEs with constant coefficients (ZTZZ = f(y) = Ay,
where A is a constant n x n matrix. If A is a diagonalizable matrix, then its eigenvectors (for
eigenvalues Ay, ..., \,;) form a basis in the n-dimensional space. The ODE system with large
differences in eigenvalues is called a stiff ODE system. In this case, semi-implicit method
or implicit method is preferred to solve the stiff system of linear ODEs. For example, a

semi-implicit method can be developed as
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Apply this method to the equation ¢y’ = —Ay with A > 0 and examine the stability of the

method.

6. Write a pseudo-code to solve the one-dimensional heat equation
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with boundary conditions u(—m) = 0 = u(7) and initial condition u(z,t = 0) = g(z).



