CHAPTER 11 SPECTRAL METHODS

Find the coefficients {a;}7L, and {b;}7; that minimize the square error

L E
fn (o) - fmla) do (11.9)

Strictly speaking, this problem can be formulated for the more general 7
class of square integrable functions, but since this involves subtle definitions
from the theory of Lesbegue integration, we focus on functions with ; jump dis-
continuities at a finite number of points, which covers most common practical
applications.

The following solution of Problem 11.1 is typically presented in courses
in Partial Differential Equations.

Trigonometric
approXimation

o
i
t

There exists o unique solution of Problem 11.1 with

f F(x)cos (2“”) . i=01..m,
b,-=zf° f(z)sin(lg?)dz, i=1.2%..m

For any small € > 0, there ezists m > 1 such that

L
[ v - tmetase

A typical example of the tngonometnc appmxmlataon is the reprwenta;-
tion of the sign function on the interval [—1,3]

+1, d<w<l
-1, -I<z<0

flz)= 51@(1) {

by the trigonometric sum of sinuseidal functions

m

4
fnlz) = ; T

sinw(2f — 1)z, ~-1gz<,

(1.7

The partial sum f,,(z) is an odd periodic function with the period L = 2,
which satisfies the Dirichlet boundary conditions f,(0) = fm(1) = 0. Notice 3
that the original function f(z) has twe jump discontinuities at the points 3
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=z =10 and z = 1. Theorem 111 guarantees that the distance (11.5) can be
reduced with larger values of m for any given small € > 0. Indeed, $he error

B
= L B 1)

can be reduced below a.ny small number 2, since the sum z;—1 @‘-17’ con-

verges absolutely to I~ S asm goes to infinity.

If the function f(z) is sufficlently smooth, the partial sum f,(z) con-
verges pointwise to f(z) at each point ¢ € [0, as m — oco. Moreover, for
sufficiently smooth f{z) there exists a uniform bound on the absolute dis-
tance |f() — fm{z)| for all = [0, L], which converges to zero as m — oo, In
this case, we say that fi{z) converges to f{z) uniformly on [0, L]. In general,
the absolute distance between f(2} and f,,{z) can be estimated in terms of
powers of m depending on the smoothness of f(z).

R

g Let f(x) be k-times conti y differentiable on [0, L]
for some k > 1 and let the periodic boundary candmons Foy = F(L), {0} =
FE), vy FRN0) = FRHI) be satisfied. Then, there ezists constant Gy > 0
such that

Ci
2 e = fne S oy m2l (113)

If the function f(z) has jump discontinuities either in the interior points
0 < z < L or at the endpoints z = 0 and = = L (when f(0) # F{L)),
the partial sure f,(x} converges pointwise to the mean value of f(z) at the
jump discontinuity. In this case, the convergence is nonuniform and Gibbs

oscillations near the discontinuity puints arise resulting in the nonvanishing -

local error 2s m — co. For the sign fanction (11.6) with the jump discontinuity
at z = 0, the partisl sum fp,(2) overshoots the value f{z) = 1 for small
positive = for any m > 1. As m — oo, the local error shifts toward the point
= = 0, but it does not vanish [9].

Following the trigonometric approximation, the trigonometric interpola-
tion can be introduced in two different ways. In the first method, the partial
sum (11.1) is discretized on the uniform grid with constant step size to match
the given set of y-values and the sciution of the resulting linear system repre-
sents discretizations of integrals in the coefficients (11.3)}(11.4), In the second
method, the same discretizations of the integrals (11.3)-{11.4) are recavered
from analysis of elgenvalues and eigenvectors of the difference eigenvalue prob-
lems. Whereas the first method extends the linear systems of polynomial in-
terpolation in Section 5.2, the second method is closely related to calculus of
differences for numerical derivatives in Section 6.2,
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B Let a discrete set of data
defined on the uniform grid of

p
equally spaced z-values

gy L
T

k=1,2,..,n+1, (11.9}

subject to the periodic boundary condition g,17 = ¥ When n = 2m, find
the interpolant K, (x) in the form,

1 sy P . {2mjz 1 Yrmey -
Frlz) = Eﬂo + a;cos -5 + b; sin < + —z-am cos T R

{(11.18)

=1

(11.11)

F(ze) = sy E=12_..n

‘We have edapted several conventions in Problem 11.2. We enumerate the
coefficients a; from § = 0 to § = m to be consistent with the trigonometric
sum (11.1) in Problem 11.1. On the other hand, we enumerate the discrete
grid from & =1 to 5 = n+1 to keep consistent with Problem §.1. The reason
why we have defined the coefficient ay, with the factor § will be clear from the
solution of the system (11,11}, Furthermore, we have dropped the coefficient
bm since it is not defined on the discrete grid (11.9) where sin(a(k — 1)) =0
for any k € N. The set of equations (11.11) is truncated at & = = since the
equation for k = n-+ 1 is redundant as a result of periodic boundary conditi
¥n+1 = 31 Finally, we shall consider-only the case of even values of n. Problem
11.2 can be extended to the case of odd values of n, but all formulas need 5.
be rewritten with simple modifications.

The system of equations (11,10)-(11.11) is equivalent to the linear alge2
braic system for (m+1) coefficients {a;}F, and (m—1) coefficients {b; ;’:1

T =L T VA2 [Tt VAR
yk—§m0+j§a,cos(T -+ b; sin o +2umcos(1r(k 1))

(1119

where k= 1,2,...,2m.

The MATLAB solver \ [backslash) gives a unigue solution to the system
(11.12), assuming that the linear system is neither singular nor ill-conditioned
The next example presents & numerical solution for the sign function {11.6);
extended from the symmetric interval [—1,1) to the fandamental interval [0,2} :
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by periodic continuation. The MATLAE script trigonometric_sums per-
forms computations of the coefficients {a;}7, and {8;}73" of Problem 11,2,
These coefficients are compared with the exact values (11.7) for the coefficients
{b5}7%, of Problem 11.1.

% trigenometric_sums

x=-1: 0,26 : 1; y = sign(x);

n = length(x) ~ 1; m = n/2; L = 2;

y(1) = 0; ylo+l) = 0; % continuation of data to x in [0,L]
xx = [x(mti:p},x(1m)]'; yy=[y{m+l:n),y(1md]";

A = 0.5%0nes(n,1}; % building the coefficient matrix

for j =1 ! (n1)

A= [ A cos(2¢pisj¥xx/L), sin(2epixjexx/L) 1;
end :
A= [ A, G.5xcos{2spimmexe/L} 1;
c = A\yy; % Fourier coefficients of interpolaticn
a = [c(1};c(2:2:1)3'; b = {0;c(3:2:n);0]"' -
bb = 0; jj =1; ¥ Fourier coefficients of approximation
for j=1:m-1

if (3j = 1)
bb = [bb,4/(pi*j)]1; jj = 0;
alse
th = [bb,0); 3ij = 1;
end
end

xInt = -1: ¢.002 : 1;
¥Int = 0.6+a(i}*ones(1,length(xInt});
for j =1 : (m-1) % trigomometric interpolation .
yint = yInt + a(l+jd*cos(2+pi+j*xInt/L) + b(1+j)*sin(2+pisj*xInt/L);
end
¥Int = yInt + O.5*a(m+i)*cos(2«pism*xInt/L);
yyInt = zeres(i,length(xInt}); ¥ trigonometric approximation
for j =1 : (@1
¥¥Int = yyIot + bh(i+jl+sin(2#pisj+xInt/L);
end
plot{x,y,'.g' ,xInt,yInt, 'b',xInt,yyInt, " :xr');

When the MATLAB script trigonometric_sums is executed, its output
shows that all coefficients {a;}7-, are of the order of machine precision. This
is explained by the fact that the function f(r) is odd in 2. On the other
hand, the coeficients {b;}7-;! of the trigonometric interpolation are different
from the coefficients {b;}72; of the trigonometric appraximation. Therefore,
the functions Fr(z) and f,,(z) give generally different representations of the
original function f(x). Figure 11.1 plots functions Fin(z) {solid curve) and
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Figure 11.1 Trigonometric interpolation Fr,(z) _(s.ulid curv?), trigom:im;:st]nc
approximation fm(z) (dashed curve), and the original function f{z) (

F(2) (dashed curve) with respect to the orig:'.n_al fx_mctiun bi (m)_ (dotsgisc'l;lll:j
t.:; onometric approximation displays Gibbq: oscillations a.t the jurap . 14
tin%.lities £ =0 and z = &1, while frigonometric interpolatien fits much close
to the given data points, T

>> trigenometric_sums

a

1.0e-015 *
0,1248

-0.0236 0.0865 -0.0883 -0.0139

1.2071 0.0000

1.1 TRIGONOMETRIC APPROXIMATION AND INTERPCLATION

Compute the trigonometric approximation fi,(x) for the
sign. function (11.6) with different values of m and prove numerically that

the lacal truncation error for fm{x) does not reduce with larger values of m

but shifts toward the jump point = 0. Piot the maximum error for the

trigonometric approximation versus m.

EEVSE Repeat Exercise 11.1 for the trigonometric interpolation
F().

To ensuré that the Linear system (11,12) is neither singular nor ill-
conditioned, compute the product of the coefficient matrix A and its trans-

posed matrix A’ in the previous example. The result is surprising: the product

matrix ie diagonal, implying that A can be made into an orthogonal matrix
afterward by appropriate sealing of its columns. ’

> P = Atxp
P = .
Columns 1 to §
2.0000 0.0000 0 -0.0000 0.0050 0
0.0003 4.0000 0.0000 $.0000  -G.0000  -D.0000
0 0.00G0 4.0000 -0,0000 o 0.0060
~0.0000 ¢.0000  -0.0000 4.0000 ,0000 0.0000
0.0000 -0.0000 Q 0.0000 4.0000 - -0,0000
¢ -0.0000 0.0000 0.0000 -0.0000 4.0000
-0.0000 0.0000 -0.0000 -0.0000 0.0000 - 0.0000
[} 0 -0.0000 0.6000 0.4000¢ -0.0000
Columns 7 to B
-0.000¢ 1
¢.0000 Q
—-0.0000  -0.0000
-0.0000 ¢.0600
0.0000 0.0000
0.0000  -0.0000
4.0000  -0.0000
-0.0000 2.0000

The diagonal eatries of 4 * *4 are found to match m = 4, except for the first

and last entries that match F = 2. By using these normalization factors and
the arthogonality of columns of A, we obtain the exact sohition of Problem
11.2.
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There exists o unique solution Fy(2) of Problem 11.2 for

1 M) §=0L..,m, (1113
o= 3 e (2

(k- . 14)
12’* . (milk 1))‘ jel.am-i (111
b= m k:lyk = ( s

B the first and last terms in the interpul:-_;t.ing funuc]tzon( 1117',,1.:(;;:1
i °10) 5 defined with the factor 1, the summation forzm asd 19
g a;sﬁn:d uniformly for any j. By using the vector dot pro ;z;:e for
o trix cornputations of summation formulas, you can regls e the
it VECtO?’-D1liei; for the kinear system {11.12) in the previous examp ee
Mﬂaii]gns‘f)ormulas (11.13)-(11.14). The result is, of course, the same,
UL )

»> for j=0:m

ixj*xx/L)/m;

(3+3) = yy'¥cos(Hpiejamc/L) /i

:(;+1) - yy'*sin(2*Pi*J*xx/L)/m’
end

> a

ang =
1.08-016 +
0

.

ans =

0  1.2071  0.600  0.2071  0.0000

. aetl

The fast Fourier transform is s popular algontbn_:l t:or fla;; :nogdpuj:: 16

f the discrete Fourier transforms (11.1‘3)7(}1-14). If.r is Anél]: mettied 1

o ftware packages and computational libraries. gLA A angfoms o=

b i discrete Fourier tr it

i ions: £t and ifft for the f :

bas_m fnﬁ:iﬂiﬁiaﬁons The fast Fourier transform operates with the coRij)
Various .

form of the trigonomstric interpolation:

Discrete Fourier
transform

1
_ 1 "Z oD p =12,
n
=

n
—irj{k—1})/m
65 = Y e EII,
k=1

111 TRIGONOMETRIC APPROXIMATION AND INTERPOLATION

where for j=1,2,...,.m—1
& =miej—iby),  on=mla;+iby) = c_,

ond for j =0 and j = m

S =My, Om = M.
The coefficients {a;}e, and {85 1! can Be found from the coefficients
e} io by :
. )
m m

where ¢g and ¢, are real. We note that the relation ¢;—; = e_; can be derived
from the simple identity -

eimilk—1}/m _ iv[(j-n)(k—l)/m' (11.17)
The latter modification allows us to move coefficients with negativé indices
{c_-;}_,;l‘m to coefficients with positive indices {cj};?;l - The fast Fourier trans-
form is based on the conmplex discrete Fourier transform with . = 2V where
N € N. See {6] for details of the computational algorithm. The fast Fourier

transforma requires nlogn computational operations versus n? operations of
the discrate Fourier transform, . :

Apply the MATLAB function £t to the function f(x) =
or [-10,10] with n = 2% and n = 2¥ _ 9 data points and compute the
CPU time of each application. Show that there is no difference between the
CPU time of the two operations even when the values of V becomes larger.

e

Finishing the previous example, we give yet another equivalent method

7 for computing coefficients of the irigonometric interpolation:

= £ft(yy);
= (real(c(1:m+1)}/m)"

0 0 e o 0

> b = (~inag(c(1:m+1)) /m)

0 1.2071 i 0.2071 ]
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The formula (11.15) is referred o as the inverse discrete Fourier trans-
form, whereas the formula (11.16) is referred to as the discrete Fourier
transform. You can confirm that $he two operations are inverse to each other
in the sense that the successive use of {11.16) and (11.15) restores the same
set of data values yi, k= 1,2,...,n.

>> yy = iffele)’

¥y =

Columns 1 o &

0 1.0000 1.0000 1.0000 o ~-1,0000
Colunn 7 to 8
-1.0000 ~-1.0000

The pair of direct and inverse transforms is vsed in the pseudo-spectral
method, where the solution of & time-dependent problem is computed by means
of iterations and each iteration involves $he discrete Fourier transform of the
unknown function, its derivatives, and its multiplications.

11.2 Errors of Trigonometric Interpolation

The summation formulas (11.13)~(11.14) can be viewed as an application of
the trapezcidal integration rule to computations of the continuous Fourier
integrals (11.3)-(11.4) over the equally spaced discrete grid of z-values. (The
trapezoidal rule is discussed in Section 6.5.) It is surprising that the approx-
imate trapezoidal rule recovers the exact summation formula found from the
orthogonality of the coefficient matrix of the linear system (11.12). This mirac
ulous property can be explained by the method of spectral decompositions
from Linear Algebro (eigenvalues.are covefed in Section 4.1). Moreover, the
same method can be extended to construction of other spectral interpolations,
such as the polynomin] interpolation with orthogonal {for exemple, Chebyshev
and Legendre) polynomials [24].

Let us discuss the principal difference between the trigonometric approx-
imation in Problem 11.1 and the trigonometric interpolation in Problem 11.2.
Problem 11.1 operates on the infinite-dimensional space of continuous func-
tions f{z) defined on & finite imerval [0, I] with the periodic boundary con-
ditions. On the other hand, Problem 11.2 operates on the finite-dimensional ;
space of data points 21,72, .. . ¥n+1 defined on the gzid of equally spaced val-
UES T1,T2y. .+ ¥ni1 With the boundary conditions yniy = 31- As a result, we
may view the linear sysiem (11.12) as a unique decomposition of the vector
¥ = [y1,¥2: - - -» ¥n) € R™ over the set of basis vectars in R*, where the unknown |
values of ag, 81, .., &m 8ud by, bs,.. ., bm_1 for » = 2m are coordinates of the -
decomposition. The discrete trigonometric functions in the system {11.12}';

11.2  ERRORS OF TRIGONOMETRIC INTERPOLATION

represent an orthogonal set of eigenvectors of a li ; .
0 near eigenval
that builds & particular hasis in B™, g- el problem

Te understand the linear eigenvalue problem for discrete trigonometric

functions, recall i iouville ei
pune , recall the continucus theory of the Sturm—Lmuw:lle eigenvalue prob-

onsider the boundary-value problem on the firiite interval,

u'(z) + /\u(:c).= 0, D<x<t, (11.18)

subject to the periodic boundary conditions u(L} = u(0) and w/{L) = 4/(0),

The problem (11.18) has o complete orthogonal set of eigenfunctions u;(z) =

e2misE i ¢ T, which correspe i iy?
ik, . sponds to the set of eigenvalues Ay = (21
satisfies the orthogonality relations ' f ! ’ ( “ } -

L
. fo (2} (w)dz = L6z, (11.19)
where 6,4 is the Kroneker symbol, Any square integrable functi :
represented as the compler Fourier series rebi fnction f(z) un be

Fey =3 eyuy(z),

L
> = % fu F@)aylz)dz.  (11.20)

Replacing the contitmous second deriv-ative in the di at i

. e differential equation
(11.1.8} with the second-order central difference (see Section 6.2) w? obtain
the difference eigenvalue problem: - ’

xg1 — 20 + iy + A2 =0, 1<k<n, (31.21)

su_hject to the periodic boundary conditions Upe) = %; and 2y = u,{r. Here,
h is the step size of the spatial discretization, such that b = L/n. The dxf-'
ft.erence eigenvalue problem (11.21) has a complete set of exact solutions for
eigenvectors u = [uy, uy, ..., un] and eigenvalues X:

uk:eiz:rj(k—])/n :i 2 lj 3
» A=) 0<ige-1 (u2)

The eigle:}value for j = 0 is simple, while all other eigervalues are double.
The vahdxty of the solution (11.22) can be verified from {11.21} by the direct
substitution and the nse of the elementary trigonometric identity:

L

¢ — 24 e < 2008 — 2 — _4sin? 3
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the same as the complex exponentials of the inverse discrete Fourier transform

ix e bler ;
11.21} is viewed as the matriz eigenvalue pro Fhe sme g th cor pis exponatis of e v i

or & wnree- & L4 mal Ol envectors and eigenvalues
fi hy s e he se eigenvect! an

ded co flicient trix, tl t of Al
can be found with the M/ \TLAB elgemalue solver eig These cumputatmns
are ﬂh‘lSl‘.IatEd in the MATLAB seript ezgenvalues_mgen\rec Tors.

If the difference equation {

n .
Zehi(j—l)(kq)/n _ ﬂ5j,;,
k=1

we recover the discretization of the continuous inner products {11.19). Al
these facts follow from general results in Linear Algebre. In particular, The-
orem 4.6 implies that any vector x € R" is uniquely represented over the
orthogonal basis of eigenvectors Uy, U2, ... Un of a0 n-by-n symmetric (self-
adjoiznt) matrix, such that

% aigenvalues_eigenvectors

2 . i -1),-1)5
i=;*;gié(onea(1 ,a))-diag(ones{1,n-1) ,1)-diag{ones(l,n
afi,n) = -1; Ae,1) = -1

D] = e raasin diag(lz?li—'.’_ﬂ)]: % recrganize eigenvalues

= ibda(1:2:0) ; lambdaln . i
11:];1;?— [:)?’Lt(O' 1:n}/n; lambdaThecry (-= 4’;31:1(1;:;;1?3)% s
) o b 'r: ', Kappall:n),lam! 5B ) . .
le(kappa.ign‘:?%a'rﬁ?rz:i i V(:aIIJI;/max(V(:,l)); Y first five eigenvector
e o 13 ok (V89
=V(: ax(V(:,2)); v3 =V, i i
D eV ) ¥B = VG
plot(xjvl.’h',x.v&'g',x,vs,'g: JX, vk, WX, .
the MATLAB script e:‘Lgemnnues_ea:‘Lgenwat:1:c:r§1 1152 o ets
When eigenvalues of the difference eigenvalue probiiu; Elef;:) e e
:;?rﬁltl.tne;thir with the exact solution (11.]32) EBFJ‘ES::;VE . igem,aiua pabel
: £ eigenvectors for the & e
(r'lf]f?;hg?;iﬁ?;::eouk i 1 and alternating tg;ough even ux = cos{2mik/n)
& . . .
:;;d o s = e eljgeﬂfum::;]:siéltie r}i'fference eigenvalue problem,
The thres-banded coefficient ma.

i i $0TS 8L
{11.21)ds symmetric. The cigenvalues A are all real, while the eigenvec

=Ty + TeWly + ...+ Tally, (11.23)

where the coordinates x,,z3,...,2, are found from -the projection formulas

- (%, uy)
T {mpny)

The pair of decomposition formulas (11.23)-(11.24) becomes the pair of
discrete Fourler transforms (11,15)~(12.16). Wherens the discrete Fourier trans-
form (11.16) corresponds to the second-order trapezsidal rule to the contin.
ous Fourier integrals (11.8)-(11.4), the difference eigenvalue problem (11.21)
corresponds to the second-order central-difference approximation of the differ-
ential eigenvalue problem (11.18). These facts explain the “miracle™ of driko-
gonality of the coefficient matrix of the finear system (11.12).

Suppose now that the data points (z1,10), {z2,2).-. ., (Tnt1, Uns1) cOT-
respond to the continuous function f(z) evaluated o the discrete grid {11.9).
The function F,(x) is & trigonometric interpolant for the function Fflz) on
the interval [0, Z{. The distance between these two functions defines the #run-
catign error of the trigonometric interpolation. Given that we investigate in
defail the truncation error of the polynomial interpolation in Section'5.5, we
can now ask if the trigonometric interpolation performs a better job for a rep-
resentation of the function f(z). It is proved in Numerical Analysis that the
trigonometric interpolant has an exponeatially small truncation error in terms
of the number of data points provided that the function f(=) is extended into
an snalytic function off the real interval [0, ].

l=jsn S (1)

~Thaorem g Let J(x} be e periodic function on [0, L], which can be ez
tended fo an enolytic function in the compler strip |Im(z)} < o with |ulz +
)| € ¢ uniformly in the rectangle [0, L) % [—a,q], where @ > 0 and ¢ > 0.
Then, for any sufficiently large m there zxists C > @ such thet

2

? 4 max | f(z) — Fr(z)] < Ce™™, (11.25)
' : valaes {1eft) and the first five efgenvectors (right) fo femst
Figure 112 Eigenvalues

difference eigenvalue problem (11.21).

Convergence of
trigonometric
interpolation
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form=4:
X

end
xInt = -1

end

and

% Ru.nga_trig_intsrpolatian

4 1 12

= linspace{-1,1,n+1);

y = 1./¢1425%x,72) 5

m=10/2 L =2

xx = [xGmHl:n),x(Lim)';

¥y = [y(m+izm),y(1mmd] s

for j =0 :
a(j+1) = oeyy xcos (2epixjrax/L)/n;
nlj+L) = ‘Z*yy'*sin(Z*pi*j*xx/L)/n;

1 0.001 & 1;
yInt = 0.5*a(1)*onas(1,length(x1nt)); -

for j=1:
ylnt =

yInt = ylat + 0.5*a{m+1) *cos (2rpitmexInt/L);

plot(xInt,yInt,x,y,' )N

yExact = 1./(1+26%xInt. "2);
plot(xInt,yExact,’ v’}
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This result is referred to as spectral accuracy of spectral methods, which
we now illustrate with several examples. Tn the first example, we consider the
Runge function f{z) = 1/(1+ 95z on the interval {~1,1] whea the poly-
romial interpolation features the polynomial wiggle (see Section 5.5). The
MATLAB script Runge, trig_interpolation computes the trigonometyic in-
terpolation of the Runge function for n = 4,8,12 subintervals,

w % coefficients of interpelation

(n-1) % trigonometric imterpclant
yInt + a(1+j)*cos(2*pi*j*xlnt/L) * b(1+j)*sin(Q*pi*j*xInt/L);

The outpat of the MATLAD script Runge_trig_interpolation is
in Figure 11.3. No polynomial wiggle for the Runge function ocours
trigonometric interpolation for large values of m. )

The next example computes the truncation error of the trigonomel)
iterpolatien for two functions f{z) =1/(1 +92522) and f(z} = 1/(1+ 23
the interval [—5, 5] versus the number m, where n = 2m. The MATLAB g
srrer_trig_interpolation contains code for computations of the err

the two functions.

% error_trig_interpolation
form=1: 300
x = lingpace{-5,5,2%u+1);
yi=1./01+ 25%x.72)3
y2=1./0 + x.°2);
n= 2#m; L = 103
sx = [x(m+el:n),x(1m)l';

11.2
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Figure 11 i ic i
gus -3 Trigonometric interpolation of the Runge function.

¥yl = [yi(a+1:n),y1(1:m]';
¥y2 = [y2(wti:n),y2(1:m}]’;
for j =0 ’

al{j+1)

-]

a1(j 2+yy1'*cos(2api*jexx/L) /n;
l;; (]_+1) 247yl '#5in (2+pixj :mrmﬁf
bz(_!-!-i) 2*yy2‘*cos(2*pi*j*xx/1.)fn:

(G+1) = 2tyy2'*sin(2*pi*j*xxﬂ.)/n;

Bowo

end
;;n:1= Iinspace{-5,5,100i);
atl = 0.5%ai(1)*ones(i,lengt!

- h d

for j =1 : (m-1) ’ (ete)s
:ﬁ:i j y;n:i + al(1+j)#cos(2+piti*xInt/L);
= ba k . i i 3 .
o ¥ + BL(1+j ) *sin(2*pisirxInt /L) ;
ﬁ::; : glsnti 1(- 0.5%al (m+1) *cos (2+pismexTat/L) ;
Bra2(1)+ '

PR i ones(i,ljength(xlnt));
¥Int2 = yInt2 + a2(1+j)*cos (2+pixjrxInt/L);
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yInt2 = yInt2 + b2(i+j)*sin(2epirjrxInt/L);

end ) .
yInt2 = yInt2 + 0.5%a2 (m+1) *cos (2xpixmexInt/L) ;

yExactl =
yExact? =
Erroxi(m}
Error2{m)

1
1

4+ 258xInt."2);
{1+ xInt, "2
mex{aba(yExacti-yInt1)};
nax{abs (yExact2-yInt2));

d -
;:16 on; semilogy(Errorl,'b.'d; semilogy(Error2,'m.'};

i ig_interpolation is shown
he output of the MATLAR script exror_trig_im
in F';T :eoil.llfl. For smailer values of m, the logarithm D_f the total error reducgs;
lineuﬂ;r in m for both functions. Because the m’?gflonz_g (ﬁ% ;51,; (19;::&';
i = 1/(1 + 26z
le at o = 1 and the function f(x) )
e pothe logarithm of the total error drops faster for the first ﬁi}lmn
h Theorem 11.5. For larger values of m, the logant‘ c
decay much slower than the linear decay predicted

=1
=i :
in agreement witl
esrors for both functions

0%

w-ﬁg; . 1co 150

50

Figure 11.4 Maximum errar versus the number m of the trigonometric inte

polation.
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by the theorem. The slow decay of the total error is caused by the influence
of $he round-off exror, which increases with larger values of m. Compared to
the slow decay of the truncation error and the growth of round-off error in
the polynomial interpelation for large m (see Bection 5.5), the trigonometric
interpolation gives a much more robust algorithm for numerical representation
of the function f{z). '

Similar to Theorem 11.2, the error of the trigonometric interpolation is
O(m=*~1) if the function f(z) hes k continucus derivatives (see convergence
theorerns in [28]). In this case, the efficiency of the trigonometric interpolation
becomes comparable to the efficiency of the piecewise polynomial interpolation
(see Section 12.1}. :

xefcigeslTdy Compute the maximum truncation error for the trigono-
metric interpolation Fy,{z) of the function f{z) = v~ 22 on the interval

{—1,1] versus the number m. Show that the meximum truncation error does

not satisfy the bound (11.25) because f(z) is not a real analytic function in
the end points = +1. Because f(z) is not differentiable at z = %1, show
that the maximum error is O(m=1) as m increases.

Since we have assumed periodic boundary conditions at the endpoints of
the interpolation interval {0, F], improvements in the trigonometric interpo-
lation are possible by reducing the step size  and simultaneously increasing

the number of dats points n. Unlike the case of polynomial interpolation, it

is impossible to reduce the step size k and the interpolating interval {0, L]
sirultaneously because it results in the violation of the boundary conditions
on the function f{z). In addition, you must be careful when no specific bound.
ary conditions for the function f(x) are implied by the interpolation problem.
Interpolations based on other orthogonal functions (such as Chebyshev and

Legendre interpolations) could be more appropriate for representation of fune- .

tions without specific boundary conditions [24],

11.2 Trigonometric Viethods for Differential
Equations

In the problems where speciral accuracy of Theorem 11.5 can be reached,
spectral methods give a rapidly convergent approximation. In these problems,
the Galerkin methed becomes accurate with very few terms in the trigono-
metric sum (11.1), while the collocation method can be applied with very
few grid points in the uniform grid (11.9). These methods would work for
various problems, including numerical solutions of boundary-value problems
for differential equations. We shall develop trigonometric approximation and
interpolation for the simplest boundary-value problems, leaving the genesal
theory of spectral methods and their applications for more specialized texts
[0, 24, 28].
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_ subject to the Dirichiet boundary conditions u(0,£) = u{l,t) = 0 and the

SPECTRAL METHODS

Consider the heat equation (10.42) a3 the basic example of Problem 10.2.
In particular, consider the boundary-value problem

0<z<l, t>0, (11.26)

ty = Ug + flz),

initial condition u{m, 0} = g(x}, where j(z) and g(z} are given functions on
{0, 1}. For instance, you can jake a particular example of these functions as

fley=10z(1 =),  glx)=D-2sm(3nz)-

Using trigonometric approximation for odd functions on the symmetric infer-
val [~1,1] (see Problem 11.1 and Theorem 13.2 with L = 2), the function
f(z) is expanded into the trigonometric sum,

(1121

0<z£l,

flz) = Z b; sin(mwja),

=

b; = 2‘/;1 F{z)sin{mjz)dz, 1<i<m. (11.28)

If flz) = 10(1 — £), the explicit expression for by is

L 400 —(-1))
==

b;

Because the funciion f(x) is continuously differentiable on [0,1], Theorem 11.2
. ghates that the partial sum fr(z) converges.to f () pointwise and uniformly
on [0, 1] as-m — oo, while the difféfence betweets fin(z) and f(z) is O(m™).
The same order follows also from. thé explicit expression for b; since the surm
Vot J% is O(m~2). Because the truncation error does not decay expo-
nentially, the trigorometric approximation is not spectrally accurate. 'This
inaccuracy is explained by the fact that if the function f(z) is extended as an
odd function from [0, 1] to {~1,1], and thex it is contimed periodically from
~1,1] to R with peried L =2, then the second derivative f”(x) has jump
discontinuities at the points s =0 and z =1 As 2 result, the function f(z}
cannot be analytically continued in the cormnplex plane.
The Calerkin method is based on the approximation of the solution ufz,t)
of the time evolution problem {11.26) by the trigonometric sum:

™
u{x,t) = Zu_.;(t) sin(xjz}, 0<s<l,
i=1

=

11.3 TRIGONOMETRIC METHOBRS FCR DIFFERENTIAL EQUATIONS

which satisfies the boundary conditions u(0,2) = {1, £} = 0. The initial values

for u;{0) follow from the initial condit;
it; = i
same trigonometric sum with on 6, 0) = 9() expanded fto the

L
u;(0) =2 i i ]

;(0) fu glx)sin(mjz)de, 1<j<m. (11.30)

When g(x) = 0.2sin(3nz), the explici i i
| xplicit expression for u;(0) is u;(0) = 0.28; ;
:];Tff e::tf ; e;;l;e Kg;lezcéger Sy]';bl)]. By substituting (111.27) an‘:i( ()11.29) i:az'tjl;

ion .26), i &

Joripelv i we find the uncoupled systems of ordinary differ-
d’u._f

— = ﬁijZt‘j(t) " bj,

at l<i<m.

(11.31)

The exact. solution of the ODE systems (11.31) is svailable in analytie form:

) = YN b 243
15{0) = w0 0+ 2 (1-e7), 1<izm (13
wl‘:lere 4;(0) are given. Alternatively, initial- :
p]fed ta the .numerical solution of th:’ ODE syxrie(ﬁl):i?) .S?'lavzfil:ﬂ ca:: :]I;&;
:E,io:g?:g:c snr: (21.29} becomes thn? numerical approximation of the ;olu-
bon surfac u{z, ). The MATLAB script Galerkin_method shows details of

e erkm method supplemented by the fourth-order Runge-Kutta method
for solutions of the ODE system (11.31) {see Section 9.2). °

Galerl_(in_,method
m=5; j=1:m : . ’ -
b - 40%(1 - {-1}.75)./{pi"3%j.~8); ¥ inhomogenecus ternm
. geros(i,m)_; u{3) = 0.2; % initial condition

= 0.5; t = linspace(0,T,101); dt = (2 %ot

T, H = -t(1}; i

uSpectrum(l,:) = u; @el0; % vime gria
for k = 1 : length(t)~1 %

1o + Tourth-order e-Kutta meth
k1l = -p:!. 2%3,"2.%u+b; ul = u + 0.5kdtakl; g merhod
k2 = -3::}.‘2*j.’2.*u1+b; u2 =y + 0,5+dt+k2;
kK23 = —pi”2+j."2.4uZ2+b; u3 = u + dt¥k3;
kd = -pi2sj,"2.*udsh;

u = u + dee(ki+2¢k2+25k3+k4) /6;
uSpectrum(k+1,:) = u;

(=
[

end
x = linspace(d,1,101);
U = zeros(length{t),length(x)};
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for k = 1 : lengsh{t) % solution surface

for =i:m ) . .
jgl(k,:) = U(k,:) + uSpectrum(k,jj)*sin(pi*jj+z)};
end

end
[X,T] = meshgrid(z,t); nesh(X,T,U);

When the MATLAR script Galerkin_method is executed, it ctzmputes tt‘.h_e
numerical approximation of the solution surface u(z,t) by the :rlg.onomef ;::;:
sum (11.29) with m = 5 for 0 < ¢ < 0.5. Figure 115 shows !;hle 50| utloOriTr =
w(z,t), which displays a transformation of the initial condition u(ml.l zg).g
to the time-independent solution of the boundary-value problem (11.26):

5
Uoola) = Jlim ufz,t) = gac(:c“ — 257 +1). {11.33}

Except for the initial time ¢ = D, there exists an error betwlveen 1’.]123L f);a;(;t
solution u(z, t) of the heat equation (11.26} 'and the trigonometric sum ( 01: t,he'
The numerical error is caused by two main sources. The first saugg: ! ihe
oumerical error is a discretization of the numerical solution of the sy .

)
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(11.31). Although the exact solution (11.32) is available in this particular case,
the numerical ODE solver is often the only avaiiable tool for computations
of solutions of the ODE, systems. Unfortunately, the ODE system (11.31)
becomes stiff for large values of m because the decay rate A; = 725 becomes
larger with larger values of j. As & result, all explicit ODE solvers develop
instabilities for larger values of j, while implicit ODE, solvers may produce a
stable numerieal solution of the ODE systems (see Section 9.5), Even if the
ODE solver is implicit and stable, it leads to a numerical error that depends
on the time step T and converges to zero as a power function of r. For instance,
the global truncation error of the fourth-order Runge-Kutta method is O(r*)
(see Section 9.2).

The other source of the numerical error is a truncation of the trigonometric
sura {11.29). This source is controlled by Theorem 11.2 on the trigonometric
approximation. In the partienlar problem (11.26) with f(«) = 10z(1 — =), the
limiting stationary solution u.,(z) is the polynomial of degree four {11.33}. I
oo () I extended to the entire axis as an odd periodic function with period
L =12, it has jump discontinuities in the fourth dsrivative, implying that the
corresponding trigonometric sum (11.29) has an O(m™*) error as m — oo,
Since u(z,0) = g(z) = sin{3nz) is represented by the trigonometric sum
exactly, the truncation error of the xepresentation for u(z, £} coincides with
that for teo{z) for any fixed value of £ > 0. If f{x) wers represented by a
$rigonometric sum (11.27) with spectral accuracy, then the solution u(x,2)
would be represented by the sum {11-29) with spectral accuracy, too.

Use the exact solution (11.32) for the ODE system (11.31)
and show that the error between the exact solation «(z, £) in the Fourier series
form and the trigonometric sum (11.29) for & fixed value of £ > 0 is O(m—4)
for f(z) = 102(1 - 2) and is exponentially small in m for f(2) = sin{wz).

By using trigonometric interpolation, Werdevelop the collocation method,
whick is based on the numerical approximation of the solution ufz,t) of the
PDE (11.26) at the uniform grid

— k-1
 (mt1y

Compared to the formalism in Problem 11.2, the trigonometric sum {11.29)
extends the sum {11.10) by increasing the index m by one. In addition, the
cosine terms in the sum (11.10} are identically zero as the function u(z,t) is
extended into a periodic odd function on the z-ads with the period I = 2,
The initial values for u;(0) in the trigonometric sum (11.29} follow from the
trigonometric interpolation of the initial condition u(x,0) = g{=) by

Tk Isk<m+2 {11.34)

LIEVES iw(ﬂ) sin(mizy), 2<k<mil,

=1

Collocation
methoad
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with the inversion formula

tl

2 . . .
u;(0) = iy § glme)sin(mize), 1€j<m. {11.35)
k=2

Compared o the sum (11.10), the summation over m+ 3 < k <n—1isnob
performed, since the function g(z} Is extended into & periodic odd function
on values of oy beyond the range 1 € k S m+ 2. Similarly, the source term
in the heat equation {11.26) is approximated at the grid points {11.34) by

m
flm) =3 bysin(rmy),  2<k<m+l

i=1

with the inversion formula

2 mtl

by = o Z f(:l:_lg] sin{mizg), 1€5<m,
k=2

{11.36)

When the trigonometric sums for u{z, t} and f(z) are substituted into the heat
equation {11.26), the same system of uncoupled ordinary differential equations
(11.31) arises. The ODE eysbera can be solved with an initial-value ODE
solver such as the fourth-order Hunge-Kutta method. The MATLAR script
collocaticn_method shows details of the collocation method for the funcéions
Fi} and g(z), while the ODE solver is coded similarly to the MATLAB script

Galerkin_uethod.

Y% collocation _methed
m = 5; x = linspace(0,1,m+2);
£ = 10%x.*(i-x}; % source Term
for j=1:m T
b(§) = 2assin(pixirz')/ (¥}
end
g = 0.2%gin{3+pixx); % imitial condition
for j=1l:m
u(j) = 2geain(pixjsx')/ (@Hl);
end
j o= 1m; T = (.5;
t = linspace(0,T,101); dt = %{2)-t({1);
uSpectrum{l,:} = 1}
for k = 1 : length(t}-1 ¥ time iterations
-pit2%j."2.%utb; ul = 0+ 0.5+dtxk];
k2 = -pit2xj. 2 *ulth; u2 = u + 0,5%dt*k2;
k3 = —pi‘2*j.“2.*u2+b; u3 = u + dt*k3;
-piT2*j. "2, %udb;

=
-
n
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u = u o+ Atk (k1224 2%k3+ka) /6;
uSpactrum{k+l,:) = u;
end
X = limspaca(0,1,101);
:IEJ = zeros{length{t),length{x)};
or k =1 : lengtk(t) ¥ soluti
for g o 1 « #olution surface
Uk, 1) = Uk, ; ) #sing :
i i) €k, 1) + uSpactrum(k,jj)*sin(pisjjsx);
end

[X,7] = meshgrid(x,t); mesh(X,T,U};

he IY\?lmn.tlm I\vIATLf&B sFript collecation method is executed, it éompuﬁ@
" urr;;:-r:ama.]l3 a,ﬂllarixlmation of the solution surface u{z,1), whicl,'l is shown in
.6. Both the transient process and the limit jon imila)
mure salu i
to ones modelled by the Galerkin method (see Figurenﬁﬁ)' tion lock siiler
Let us now compare the truncation errors of the Galerkin and collncatioﬂ

- Y . E
methods for numerica! approximation of the Limiting solutions ue(z) of the rrars of

spectral methods

Figure 11.6 Solution of the heat equation (11.26) by the collocetion methad,
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heat equation {11.26). The limiting golution (i) solves the boundary-value
ODE problem

U + F(@) =0, O<z<] {11.37)

subject to the Dirichlet boundary conditions «(0) = u(1) = 0. In both meth-
ods, the solution u(z) is approximated by the trigonometric sum (11.29) with
the time-independent coefficients wu; = b f(n%%, § = L,...m. The only
difference occurs in the computations of the vales of b;. These values are
computed from continuous integrals (11.28} in the Galerkin method, while
they are computed from the discrete sum (11.36) in the collocation method.
Numerical solutions of the ODE problem {11.37) with f(z) = 102{1 — ) are
uted in the MATLAB script ezrors_trig methods by both methods
found from the exact soution (11.33).

comp!
and the truncation errors are

¥ errors_trig_methods
M= 100; x = linspaca(o,l,lool);
form=1:2:H : .
j£1 :'m; bl =40+ - {=1).7§y./ (pi~3+].78);
xx = linspace{0,1,mt2}; f = 10%xx. % (1-x%) 5
for jj=1:m
b2{jj) = 2*Eesin(pitiisxx’ M/ (@)%

end
wi = bi./pitaxj.m; u2 = b2./{pi"2xj."2);
Ul = mares{size(x)); UZ = zeros(size(x));
for jj=1:m

Ul = U1 + ul{jji*sin(pixjixx);

Uz = U2 + u2(jjresin{pix]j*x);

end .
Uexact = Brx.#{x. 3-2%x. 2+1}/6; .

Errori{(m+1)/2) = (U1-Uexact) ."2));
Brror2{ (m+1}/2) = (U2-Yexact) ."2));

end
m=112:M; % power fit for the error dependence

at = pnlyﬁt(log(m),1og(]':‘.rror1},1); powerl = ai(1}
ErrorApri=exp{al{2))*exp (powerixlogim)};
a2=polyfit(1og{m),1og(Error2),1): power2 = a2{1}
ErrorApr2=exp(a2(2}) *exp (power2#loglm)};
plot{m,log{Errorl), 'b.’ .z, log{Errorhpri), ':g'); held on;
plot (m,log(Error?),'r. "' ,m,log{ErrorApr2}, ' :y')

“‘When the MATLAB script errors_trig.methods is executed, the errors
of the Galerkin and collocation methods are computed and shown as dots in}
Figure 11.7. The best power fits for the two data sets are also computed an
plotted by the dotted curves. You can see from the power fits that the err

11.3  TRIGONOMETRIC METHODS FOR DIFFERENTIAL EQUATIONS

a
9

sce Collocaticn
oy, T
oa, p LTI
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Galerkin
_250 .
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m

Figuze 11.7 Truncation errors for th i :
; e nymrerical soluti
(11.37) with the Galerkin and collacation methods. ousofthe ODE?: problem

]f]or eii,)he}' mrmerical solution is O(m~1) because the solution u..{z) in (11.32)
E.iS ihe jump discontinuities in the fourth derivative. You ean also see fm
Figure 11.7 that the Galerkin method has & smaller truncation error oo eu-e:il
to the collocation method with the same rate of convergence P

>¥ errors_trigonometric _methods

powerli =
-3.9924

power2 =
~3.6631

The heat equation (11.26) is one of the si
-26) ¢ simplest problems for applicati
of spectral methods. Other linear and nonlinear differential equal:t“.li)onc.: t;ioi']:
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and collocation methods. We review these
ary-value ODE problem

(11.38j

more challenges for the Galerkin
challenges when attempting to solve the bound

— o f@u=g{z), D<=z <M

== g{x) subject to the periodic boundary
/(0). In particular, we consider f(z) =
£ the linear eigenvalue problem —u” +
codgu = Au are approximated with the Hnite-difference method in Sectich
10,1, where the Neumann boundary conditions u'{0} = «' (2xr) = 0 are used)
If no periodic solution of the homogeneous ODE —u" + flzyu = 0 exists,
the inhomogeneous boundary-valie problem {11.38) admits a unique periodic
solution u(ax}, which ean be approximated mimerically by using trigonometric
gums. Both trigonometric approximation sad -interpolation lead to & linear
system with a full coefficient matrix, compared to the diagonal system that
follows from the ODE (11.37):
When the trigonomeiric interp
of the ODE problem (11.38), the inter

grid

where flz-+27) = fz) and glz+2m)
conditions u{2w) = w(0) and «'{27) =
cosz and g(x) = sinz. (Eigenvalues ol

olation is used in the numerical solution
val [0, 2n] is Tepresented by the uniform

{11.39)

k:‘Z_‘n’_(E:i), k=1,2,..,n+1

T

where n is even. The periodie function u{z) is then represented by the complex

frigonometric sum
1 = ijz 1 T AT
=— j 4+ — [e-me™ " + 11.40
u(z) - ,-=_E i€ T (e-me cm€™Y, ' { )]

oefficients {¢;}jem. 18 computed from the set of function

where the set of ¢
u(wx) by the invérsion formula

values {ug}iey With 2k =

kS - . )
i = ZUke“j“*, -m<jEm.. (11.41)
=1

The compiex srigonometric sum {11.40) 1s obtained from the trigonometric
sum (11.10) in Problem 11.2. The coefficients {¢j}Te_m a8 defined by the
same formulas as those given later in (11.15)~{11.16) but no reflection to i
positive indices eq—; = ¢-; 18 used. Procseding with the collocation method
for a Tumerical solution of the ODE problem {11.38), we define the functions '
f(z) and g{z) at the collocetion points (11.39) and meet the obstacle that

the linear problem for the set of coefficients {tg )5, is not closed because
the derivative terms " (z) are oot defined in terms of the values {uxlfia

A golution to this obstacle is constructed in (28], According to this solution,
we define the interpolation function S(x) that passes shrough points of th
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discrete delta function S(2) = i
et dete fur leadmg(tc;:) k1. Using {11.41}, we obtain that ¢; =1 for
1 . . .
- 8y = a (1 +ePpg B pgimoliT g gilmT)n cos(m:t))

_1 1 —gime ] _ g=imx
o\ Toee P -!-cos(m:;)_l)

ma) cos(z/2)
- 2msin{z/2)
Using the function S(z}, the trigonometric interpclation is written in the form

_ sin(mz}sinz _ sin[
all —cosz)

T
ulz) =Y wSlz — ), '
2. (11.42)
80 that the first and second derivati .
" . .
0 Shit e st nd secmnd ivatives of u(z) at the grid point = = 7, are
n
i
(o) = 3 (Da)esw,

=1

o'(ze) = Z(Dl)k.lﬂh
=1

where Dy and Dy are symmetric matri i :
derivatives of S{z) in the form [28]: rices obtained from the first and second

(D1)iy = 0 V i=4j
ha { ${(~17 cot{n{i — ) /n), & ?5;

and

B _1 =1
(D2)i,j _ { 131 i:, 1T=1
T 7
?:’nehnnnc]ose :ng u”{z;,) frqm the ODE (11.38) at the grid point © = zz, we
e mela sys:m of linear 'equaﬁons for the set {ui}i.;, solve itki"?ith
TLAB I ear algebra, and display the solntion u(z). -
en the trigonometric approximation is used in i
the numerical i
Zi; the ODE_ problem (11.38), the periodic fanction u{z) is represem tEdSOhIthB_ Admt“»ﬁ-‘d
mplex trigonometric sum g
method

m
ulx) = E =,

j=—m

(11.43)

where the set of coefficients {c;} T i
e oot foﬁ ui;_m is eolmputed from the continuous func-

i 2w

%= o ulz}e™VE,  —m<i<m. (1144}
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The fanctions f{z) and g} can be-represeated exactly by
£i? f g% . eit — g=i®
o cp=——p—,  SRET Ty

Proceeding with the Galerkin method for a numerical solution of the ODE
problem {11.38}, we substitute the trigonometric sum {11.43) into the ODE
{11.38) and meet the obstacle that the set of coefficients {c;}72_, is not
closed because the product term f{z)u{z) generates Fourler terms glm+l)e
and e~#m1= beyond the truncation order of the sum (11.43). 1f the explicit
form for f{x) and p(z) is used, the linear sysiem for the set {c;} ., takes
the explicit form of the difference equation

et % {ei41 +ej1) = 51;(5:'.1 —&), ~mEism. {1148
_ Assuming that the coefficients ¢; become smaller with larger values of j, wé
can truncate the linear system (11.45) beyond the terms of -m = j < m
Because ¢; # 0 for |j| = m+1, the truncation of the lineat system (11.45)
introduces an additional truncation error to the numerical approximation of
u{z) by the trigonometric sum {11.43). Because of the truncation procedure,
the linear system (11.45) becomes closed and car be solved with MATLAB
linear algebra.
The corresponding computations of the collocation and Galerkin meth-
ods are coded in the MATLAB script bvp_trig methods. Two numerical
approximations of the solution ufx) obtained by the collocation and Galerkin

methods are shown graphically in Figure 11.8.

Y% byp_trig_methods
n = 100; % = }inspace(0,2#pi,n+l};
f = diag(eos{x(1:m})); % collocation methed
g = sin(x(1:m)}'; et T .
D= ’diag(ones(‘l,n))*(n'2/12+1/6); % matrix for second derivatives
for § =1 : -l
for k = j+ti : n
D3,k = 0.54(-1)"(J-k-1)/ (sin(pi* (J-k}/2)}"2; ,
Bk, §) = B(jLK);
end

A4 =-D+ £; u= A\g; ulosl) = u(i);
m=1n/2; j=-m:m % Galerkin method
diag(j.”?) + 0.5%(diag(ones(n,1),1) + diag(onas(n,1},~13);-
gg = zeros(n+l,i}; % inhomogenecus tern .
gglm} = -1/(2#1); gglme2) = 1/(2%id;

¢ = M\gg; % solution im Fourier space

xx = linspace{0,2#pi,1001); uu = zeros(1,1001);

P
[}
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Figure 11.8 Numerica! approximations of the selution u{z) of the bouridary-

value problem (11.38) by the collocation methed (dots) and by the Galerkin

method (solid). :

for k = 1 : ntl  J solution in physical space

wu = un + c(kyrexp{isj{k)exx); -
end - )
plot(x,u,’.b' ,xx,reallunl, 'r');

i Show numerically that the co-norm of ih i

. meric e difference be-
tv«;sen the‘numencai approximations of the collocation and Galerkin'methads
teduces with larger values of m. Plot the oco-norm of the computational error
versus i = 2m and fit the dependence with a power law,

) ’;‘he ) boundary-value ODE problem (11.38) leads to the full coefficient ma-
{rix in either the collocation or Galerkin method. Another popular spectral
me?hud called the pseudospectral method overcomes this obstacle and psrzduces
a diaganal l.mea: system for the price of an iterative method. The pseudospec-
tral method iterates numerical approximations of the boundary-vaiue problem
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‘ {11.38) similar to how elliptic boundary-value PDE problems are it.emted by
embedding the elliptic problem in the parabolic problem (see Section 10.5).
Consider the boundary-value PDE problem

D<a<2r t>0, {11.46}

g = Ugz — Fl@)u + g(o),

ject to the periodic boundary conditions w(0,t) = u(2m,1) a'nd u,,{D,:t) =
i]:‘a:r,t) and &e initial condition u(m,O? = ug(x). The stationary (tun;-
independent) solutions of the time-evolution PDE problem (11.46) comcxhe
with the solntions of the houndary-value ODE problem (11.38). After t.e
time discretization is performed with the explici‘t Euler met!::d, we obtain
the iterative rule thet defines a sequence of fimctions {ux (%)) §.0:

(31.47

i1 (7) = mel(z) + 7 (i () — Flz)ue() + 9{z)) -

ime i i i tions (), f(z), am
When time iterations are performed, the given funct &(z), s
g(x) can be computed on the grid points (11.39) az.ld all terms of the itera«
tive scheme {11.47) can be diagonalized using the trigonometric S|.}ms (13.40
with the inversion formula (11.41). Let cg-k) denote Fourler coefficients of th

approximation ug(z), b§k) denote Fourier coefficients of the product terni

f{zmyux(w), and e; denote the Fourier coefficients of the function g(n:](.k;l‘h’
iterative scheme (11.47) becomes diagonal in terms of the coefficients ¢;™":

S = L) k(e - ), -m<i<m {1148

Since the problem (11.46) is linear, the itera.tive proced].\:fe {11.48) <:onv§;ay:le
to a solution from any starting approximation ‘.LLQ(I}, if it clonvel:gta:n af .

Therefore, we can start the iterative procedure with uﬂ(a:)' = 0. Ag in"all othe
iterative methods, iterations can be stopped when the distance hetweeuLA;
successive iterations becomes synnlll_er than a given 'tolemnce. The g{ATct

seript pseudospectral_method performs computations of the pseudospectr;
method for the time-evolutien PDE problem (11.46).

% pseudospectral method )
n = B0; m = n/2; x = linspace(0,2¥pi,n+1);

= cos(x{1:n)); g = sin{x(1:n)); % inhomogenecus terms
j=-m: m; % discrete Fourier trapsform for g{x)
for jj = 1 : lengta(j)
a(jj) = grexp(-ixj{jj)*x(1m)'};

c = zeros{size(a)); % initial approximation
fork=1:mn

k) = real(c{2:n)*exp(i*(-n+1im-1) "*x(k))}; . ‘
Egk; = EE(]{H(c(1)*exp(—i*m*x(k))+c(n+i)*exp{1*m*x(k)))/2)/n,
end

1%.3  TRIGONGMETRIC METHODS FOR DIFFERENTIAL EQUATiONS

tau = 0.00%; du = 1; toler = 10"{-9};
count = 0; term = 100000; % peeudospectral methed
whila ({du > toler) & (count < term))
If = f.4u; ¥ discrete transform for £0x) u kix)
for jj = 1 : lemgth(3) )
b(j3} = ffvexp(-i*j{jj)ex(lmn));
end
CC = ¢ + tauk(-j. 2.%c-b+a);
for k =1 : n ¥ inverse transform for u_{k+1}(x)
uu{k) = real{cc{2:n)*exp(i*(-m+l:n-1) faxdk)));
wulk} = (uu(k)+(cc(1)*exp(—i*m*x(k))+cc(n+1)*exp(i*m*x(k)))/i’)/n:

=]

end .
du = max(abs(uu-w)); ¢ = cc;
U= uy; count = count + 1;
ead
fpriatf{'The algorithm converges after %a iterations\n’,count);
a(o+l) = u(1); plot(z,u,'.');

When the MATLAB seript paeudospectral_method is execated, it com-
putes the sequence of numericsl approximations {ur{z)}fom that starts with
up(z) = 0 and terminates at k = kiar when the distance between two suc-
cessive iterations becomes smaller than the tolerance 10~9. The number of
iterations is displayed. The solution u() at the grid points (11.39) is shown
graphically in Figure 11.9. 1 looks similsr to the solution obtained by the
eollocation and Galerkin methods in Figure 11.8.

>> pseudospectral _method
The algorithm converges atter 15058 iteraticns

The use of explicit single-step methods suck as the Enler method in
pseudospectral methods can limit their applicability as a result of instabil-
ities of explicit ODE solvers. When the iterations {11.48} are considered with
F{z) = g(z) =0, it is clear that the Euler method is stable only if

I-jr >, -m<j<m,
such that 7 < 2/m?. When the mumber of terms m in the trigonometric sum
(11.40) grows, the time step T becomes smaller and the number of iterations
it takes to reach the same level of tolerance grows, This property resnlts in
slow convergence and large round-off error of the pseudospectral method.

There are several ways to improve the convergence and stability of the
pseudospectral metheds. For stability, implicit methods such as the implicit
Euler method can be used for a numerical approxdmation of the solutiea u(z).
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Figure 11.9 Numerical approximation of the solution u{z} of the boundary+
value problem (11.38) by the pseudospectral method.

Then, the number i can be arbitrarily large with. no effects on s.tablhig_f of l.t?
ations, For convergence, we can avoid diagonalizing e.a.ch term in the 1te'rat1v?
scheme (13.47), whick requires computations of the direct and inverse discrete
Fourier transforms at each iteration of the time-evolution scheme. V_Vhen 'th!
second derivatives of the solution ux(z) are approximated at the grid pom_ts
(11.39) with the matrix D, obtained from the representation {11.42) (as i
the collocation method), the iterative scheme can be closed for the vector of
the approximation ux(x) evaluated at the grid points (11.39)._When the con
volution sum is truncated beyond the terms |j| 2 m + 1 {as in the Ga]eﬂ?
method), the iterative scheme can be closed for the vector of the Fourie
coefficients cg-k) computed for the approximation ux(®)- :
‘When the nonlinear differential equations are considered, pseudaspectr.al :
methods are more usefil compared to the direct collocation e}nd G.alel:kui_
methods, For instance, the power terms %2 and u® as well as thelF derivativ .
¢an be computed from the kth jteration ug(z) d.%rectl)f, by using the pal
of direct and inverse discrete Fourier fransforms. Iterative methcfds becem
explicit methods suitable for numerical approximations of solutions of th
time-independent nonlinesr boundary-value PDE problem. .

“11.4  SUMMARY AND NOTES

11.4 Summary and Notes

In this chapter, we studied properties of trigonometric interpolation and ap-
proximation snd their applications to numerical solutions of ordinary and
partial differential equations.

¢ Section 11.1: Trigonometric approximation is formulated in. Problem
11.1. The solution to this problem is given in Theorem 11.1, while con-
vergence of the approximation for smooth functions is described in The-
orem 11.2. Trigonometric interpolation is formulated in Problem 11.2,
The solution to this problem is given in Theorem 11.3 and is imple-
mented in the pair of discrete Fourier transforms.

Section. 11.2: Discrete eigenvalue problems for difference equations are
analyzed in connection to continuous eigenvalue problems for differential
operators (Theorem 11.4), The error of trigonometric interpolation for
real analytic functions is described in Theorem 11.5. Analysis of conver-
gence of trigonometric interpolation shows that no Runge ‘phenomenon
can oceyr for trigonometric sums, :

Section 11.8: Two spactral methods originaté from, applications of the
trigonormetric approximation and interpolation, namely, the Galerkin
and collocation methods. The simplest (dingonal) application of these
methods is described in the example of the inhomogeneous heat equa-
tion. Errors of spectral methods and details of their pumerical implemen-
tations are discussed for two examples of the bomndary-value problems
for second-order ordinary differential equations. An additioral pseudo-
spectral method is déscribed in the context of the time-evolutior PDE
problem that embeds the boundary-value ODFE problem. .

Trigonemetric approximations and Sturm-Liouville eigerivalue problems
are presented in {27}, Trigonometric interpolations and spectral accliray are
covered in [28]. Applications of spectral methods to mumerical approximations
of solutions of ordinary and partial differential equations are treated in {9].

11.5 Exercises

1. Compute the Fourier series, the trigonometric approxireant S (), and
the trigonometric interpolant Fiy, (x) for the function

Flz)=1—z,

which is extended periodically with the period I — 2. Plot the functions
Fm{z), Fm(2), and f(z} on [~1,1] for m = 10. Plot the L2-norm of the
error E of the trigonometric approximation and interpolation versus

-l<g=],
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the number of terms m in log-log scale and fing the power fits in the
dependencies of E versus m. Compare the power fits with Theorem 11.2.

. Repeat the previous exercise for the function f(z) on (0,1) reflected
antisymmetrically on: (~1,0) and extended periodicelly with the period
I, = 2. Observe the Gibbs phenomenon by platting the local error of the
trigonometric interpolation and approximation on [-1,1] for different
values of m.

(]

Gompute the trigonometric interpolation Fy, {z) of the function

b

_ 1-2sinw

T 3-Besa O SPEN

flz)
and plot it on [0,2#] for m = 5. Find the powar fit for the 2-norm of
the error E versus the number of $erms m. Compare the power fit with
Theorem 11.5.
Write the MATLAB function [a] = L3sine(x,y,n), where x and y

are the column vectors of m elements, 0 < n < m, and a is the column
vector of n elements in the =ine interpolation

>

Faine(T) = o1 sin{nz} + ag sin{2rx) + - ..+ an sinfrmrz).

Apply this function for the data points related to the function f(z) =
2(1—z)e* on [0,1] with » = m and plot the 2-norm of the error versus

.

Use the MATLAB function ££t and compute the discrete Fourier trans-
form of the function f() = z(1 — 2?) on [0,1]. Plot the trigohometric
interpolant Frm{2) on a dense grid of data points on [-1,1]. Explain why
the resulting function is even in =. Modify the function f(z) so that the
same computation produces an odd function Fp(z) oa [-1,1]-

s

Find eigervalues and eigenvectors for fhe discrete eigenvaiue prableri
related to the set of orthogonal Hermite polynomials: :

b

g1 — 20k + ot — hEx(upgn ~ Ukoa)} + R =0,  1<k<n,

subject to the Dirichlet boundary conditions ug = #a4q =0, where the
points {z}}F} represent 2 uniform grid on {—L, L] and L is sufficiently
iarge, say, L = 10. Plot the distribution of eizenvaiues and the first five
eigenvectors of the Hermite difference eigenvalue problem, .

7. Consider the integral representation of the Bessal function

Jole) = = fo aioosty,

11.5  EXERCISES

F;ozr mi lset of equally spaced grid points on the z-interval [0, 5], replace
e Eo_r t & [0, ] with the trigonometric interpolant Fin(t), integrate
t!na function F,,,{t) analytically on [0, ], and compute the Bessel fine-
tien Jy(z). :

8. Consider the boundary-velue ODE problem
Y iy =1, <<,

subject to the Dirichlet boundary conditions y(0) = (1) = 0. Construct
the numerical approximations of the solution based on the Galerkin and
‘oolloca_,tion methods. Find the power fits of the total square error of the
numerical approximations versus the step size b on [0, 1.

9. Consider the linear sigenvalue problem
Y +Py=2y  O<z<l,

subjolact to the Dirichlet boundary conditions y(0) = %{1) = 0. Ap-
pro:cu:u.ate the spectrum of eigenvalues by truncsting the trigonometric
appro_mmation for m = 100 terms. Show that the value A = 0 is not
-the eigenvalue in the Calerkin method. Repeat the exercise by replac-
ing derivatives with matrices in the collocation method on the n = 100
equally spaced grid points.

10- Consider the Hill equation
-y +eosTy=dy, O<z<2r

subject to the periodic boundary conditions y(z + 27) = y(z). Expand
the sclution in the trigonometric series and truncate the system at m =
100 terms in the Galerkin method. Plot the spectrum of eigenvalues and
the first five eigenfunctions for the smallest eigenvalues. Niustrate that
the number of zeros of y(z) on (0, 2n) increases in the same ascending
order as the eigenvalues are sorted. ’

11. Repeat the previous exercise with the antiperiodic bul.{nda.ly conditions
y(a:.-i- ?w) = —y(z). Show that each pair of eigenvalues with the anti-
periodic eigenfunctions is located between each pair of eigenvaiues with
the periodic eigenfunctions and vice versa.

12. Consider the linear Schrédinger equation
Tty = Upg, D<z<l, t>0

for compl_e)_c—valued fonction {z, 1), subject to the Dirichlet honnd-
ary conditions u(0,8) = u(l,f) = © aud the initial condition
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—a b ical approximation of the solu-
u(z,0) = ¢~ *#¥, Consbruct the numerie u
r.ion’ surface u(z, t) for o € [0, 1] and ¢ € [0,10] based on tl.:Le Galel:km
and coliocation methods supplernanted with the exact ODE' integration.
Study how the -norm of the error converges as h — 0 for differens fixed

values of £.

13. Consider the wave equation

Uy =y +c08(22), O<z W, E20

subject to the Neumann boundary conditions 1,(0,2) = tz(m,t) = 0
andjthe initial conditions u(z,0) = u:(z,0) = 6. Construct the numer-
ical approximations of the solution surface"u(::,t) for z € [U,W]Ha.nd
t € [0,3] based on the Galerkin and coilocation methods and.the fe‘;;n
method. Show the two solution surfaces and the exact solution of the

wave equation.

14. Consider the Burgers equation

Uy = Uty + Uz, G<e<2r, t>0,

subject to the periodic bowndary conditions u(0,1) ;_;(2w,t} and
,(0,£) = u-(2m,t) and the initial condition u(z.,()) =e™. €.’Jor:11:nut:i
the numerical approximation for £ € {0, 3] by using the Pseudospectr

method based on the direct and inverse discrete Fourier transforz;s.
Study how convergence and stability of the pseudospectral method de-

pend on step size h and time step 7.

15. Repeat the previous exercise with the pseudospentr_al method has_ed cmf
the collocation method supplemented by $he matrix representation o
the first and second derivatives of u(x,t) in z. Compare convergence

and stability between the two pseudospectrat methods,

Splines and Finite Elements

ALTHOUGH TRIGONOMETRIC INTERPOLATION offers an accurate mumerical
solution 6o the interpolation problem, it also may have some shortcomings,
The discrete grid of z-values has to be equally spaced to enforce all nice proper-
ties of trigonometzic interpolation, suck s the orthogonality and convergence
of discrete trigonometric functions. On the other hand, although polynomsial
interpolation is valid on nonequally spaced discrete gxids, it may develop a,
polynomial wiggle. There exists an alternative method to overcome the Emita-
tions of hoth trigonometric and polynomial interpolations. Tf the entire inter-
polation interval is decomposed into smaller intervals conmected at the given
data points, the degree of interpolating polynomials can be reduced to avoid
the polynomial wiggle. This idea feads to the spline interpolation, which is a
basis for the finite-element method, a usefut tool in numerical approxirmations
of solutions of boundary-value problems for differential equations.

This chapter covers the construction, properties, sad errors of spline and
Hermite interpolations and applications of finite elements to mumerical ap-
proximations of solutions of ordinary differential equations,

12.1 Spline Interpolation

We tefer to the polynomial of a low degree between two adjacent data points
as a spline and to the grid point that connects two adjacent splines as e break-
ing poinf. The simplest lnear splines between each two suabsequent breaking
points coincide with the piecewise linear interpolatior for the given set of
data points. Starting with quadratic and cubic polynomizls, you will seb a dif-
ference between spline interpolation and Piecewise polynomial interpolation,
The former match the first-order, second-order, and higherorder derivatives
of the resulting curve at the bresking points, whereas the latter prepares in-
dependent polynomisls between each wo subsequent breaking points. Similar
to the uniform polynomial interpofation, spline and piccewise polynomial in-
terpolations with higher-order (fourth, fifth, etc.) polynomials may develop
polynomial wiggles. As a result, such higher-order interpolation is used less
often.

Let the set of {n + 1} data paints (z1,1n), {Z2,12)s -+ 11 (Znt1s¥n31) be
ordered in the ascending order of distinet breaking points

Tl <@y <. L Tpyy (121




