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Shear instability of fluid interfaces: Stability analysis
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We examine the linear stability of fluid interfaces subjected to a shear flow. Our main object is to generalize
previous work to an arbitrary Atwood number, and to allow for surface tension and weak compressibility. The
motivation derives from instances in astrophysical systems where mixing across material interfaces driven by
shear flows may significantly affect the dynamical evolution of these systems.
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I. INTRODUCTION

The stability of fluid interfaces in the presence of she
flows has been studied for almost half a century, and w
largely motivated by the problem of accounting for obser
tions of surface water waves in the presence of winds.
early as the 1950s, it was realized that classical Kelv
Helmholtz instability@1# could not account for the observe
water waves~cf. @2,3#!, and efforts were initiated to study th
full range of possible unstable modes by which interfa
such as those represented by the water-air interface c
become unstable. By the early 1960s, the basic mecha
was understood, largely on the basis of work by Miles@4–7#
and Howard@8#: They discovered that interface waves f
which gravity provided the restoring force~e.g., waves that
can be identified with so-called deep water waves! can be
driven unstable via a resonant interaction with the amb
wind; this work was also one of the first applications
which resonant~or critical! layers played an essential role
both the physics and the mathematics. Work carried ou
that time showed that the precise form of the vertical w
shear profile was critical to the nature of the instability; ty
cally, it was assumed that the wind immediately above
water surface could be characterized by a logarithmic pro
of the form

U~z!5Uo1U1ln~z/d11!, ~1.1!

whereUo is the velocity jump~if any! at the water-air inter-
face,z is the vertical coordinate~with z50 marking the ini-
tial water-air interface!, and d is the characteristic scal
length of the shear flow in the air.1 The idea was then to
demonstrate that surface gravity waves whose phase spe
given by c5AglA/2p (g the gravitational acceleration,l
the perturbation mode wavelength, andA[(r22r1)/(r2

1Such velocity profiles are commonly observed in the bound
layer of winds blowing over the surface of extensive bodies
water; cf. Miles.
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1r1) the Atwood number for a density interface betwe
fluids of densityr1 @upper fluid# and r2 @lower fluid#, with
r1,r2) can couple to this wind profile at a heightz where
c;U(z). At the time, it was not possible to construct a se
consistent description of the problem, such that a logarith
wind profile automatically emerged from the analysis; a
much of the subsequent work has focused on establishing
nature of this wind shear profile~e.g., @9,10#!. Finally, we
note that these studies have since been applied to a nu
of other contexts, including especially shear flows in atm
spheric boundary layers, where they have been extensi
expanded, including into the weakly compressible regi
@11#.

Our own paper is originally motivated by an astrophysic
problem in which mixing at a material interface between tw
fluids with different densities is essential to the evolution
the astrophysical problem. Specifically, consider a wh
dwarf star, whose composition is almost completely dom
nated by carbon and oxygen. If such a star is in a cl
binary orbit with a normal main sequence star, then it h
been known for some time~e.g.,@12#! that accretion of mat-
ter from the normal star~largely in the form of hydrogen and
helium! can lead to a buildup of an accretion envelope on
white dwarf, which is capable of initiating nuclear hydroge
‘‘burning.’’ This burning process can lead to a nuclear ru
away, in which the energy released as a result of th
nuclear fusion reactions is sufficient to expel a large fract
of the accreted matter in the form of a shell; such a runwa
referred to in the astronomical literature as a ‘‘nova.’’ Th
key element relevant to our present paper is then that ob
vations show that approximately 30% by mass of the eje
are in the form of C1O nuclei: since neither carbon no
oxygen are products of hydrogen burning in the accre
envelope, it must be the case that some sort of mixing p
cess brought large amounts of stellar~i.e., white dwarf! car-
bon and oxygen into the overlying accreted material bef
envelope ejection. Furthermore, a detailed analysis of
energetics of the runaway process has shown that sim
hydrogen burning in the envelope cannot provide enou
energy to power the observed nova; thus, additional ene
release via ‘‘catalytic’’ nuclear reactions in which C1O play

y
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important roles is required in order to match the observati
~cf. @13–18#!. Thus, from the perspective of both observ
abundances of nova ejecta and consideration of the nova
ergetics, efficient mixing at the star-envelope interface
called for. Several possible mixing processes have been
cussed in the literature, including undershoot driven by th
mal convection in the burning envelope and Kelvi
Helmholtz instability; but detailed studies have shown all
them to be ineffective in producing the required mixing~e.g.,
@20,21,19#!. In this regard, the current astrophysical situati
resembles the problem encountered by oceanographers i
1950s, as they tried to explain the observed mixing betw
the seawater-atmosphere interface. A new instability
needed to account for the observed mixing@2#.

Following the previous oceanographic work, we explo
the possibility that a critical-layer instability related to th
coupling of stellar surface gravity waves to a shear flow
the hydrogen envelope can account for the enhanced mi
rate. Thus, in this paper, we embark on a systematic stud
such an instability and apply our results to the specific c
of mixing of C-O to H-He envelope of white dwarf sta
@22,23#. We note that similar scenarios can arise in a vari
of other astrophysical systems, such as in the boundary l
between an accretion disk and a compact star, where mi
between fluids of different densities—as in the no
problem—is expected to play an important role. Howev
the earlier nonastrophysical work largely focused on the c
of very large density differences between the two fluids se
rated by an interface, and primarily considered the fully
compressible case~the weakly compressible case has be
considered by@11#!. For the astrophysical case, the dens
ratios can be of order unity~for the nova case, a typical valu
would ber1 /r2;1/10) and the Mach number for the inte
face between the accretion flow and the white dwarfs surf
can range from very subsonic to of order 0.2. The aim of t
paper therefore is to extend the shear-flow analysis to a
trary density ratios, shear, and compressibility. We prov
estimates of the growth rates of unstable surface waves,
determine the regions in the control parameter space
correspond to different instabilities for different physic
situations. This paper is structured as follows: In the n
section, we define the problem to be solved more precis
Sec. III describes the linear analysis for the incompressi
two-layer case. Section IV and V describe, respectively,
inclusion of surface tension and extension to compress
flow of low Mach numbers. We discuss and summarize
results in the final section.

II. FORMULATION

The starting point of our formulation is the identificatio
of the appropriate material equations of motion. This iss
has been well-discussed in the literature, including the m
vating white dwarf case@24#: in general, we can expect th
gaseous surface and atmosphere of such stars to be we
scribed by the single fluid equations for an ideal gas. M
specifically, the length scales of the physical mixing p
cesses discussed here are all far larger than the Debye le
so that the ionized stellar material can be considered to
02631
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neutral; and as long as the stellar magnetic fields are w
@e.g., b[(gas pressure/magnetic pressure)@1# we can ig-
nore the Lorentz force. Furthermore, the ratio of the spa
scales of interest to the Kolmogorov scale is lar
(typically.104) so that we are in the large Reynolds numb
limit, and viscous effects on the motions of interest will b
negligible. As a consequence, the Euler equations will
describing our system.

We consider a two-dimensional flow withx the horizontal
direction andy the vertical. The system consists of a layer
light fluid ~densityr1) on top of a layer of heavy fluid~den-
sity r2). In most of our analysis,r1 andr2 are constant in
each layer, and in the most general scenario, both layers
be stratified~densities are functions ofy). The two layers are
separated by an interface given byy5h(x;t), which initially
is taken to be flat@y5h(x;0)50#. The upper layer (r1) is
moving with velocityU(y) in the x direction parallel to the
initial flat interface, while the lower layer (r2) remains still.

As already mentioned, the instability of such stratifi
shear flow has been investigated~cf. @2,8#!, albeit under lim-
ited physical circumstances. We study this problem in f
generality, allowing for a variety of effects~including broad
ranges in the values of the Atwood number/gravity and
compressibility! with the motivation that one can establis
the role of the relevant instabilities under more general
trophysical circumstances than the restricted case of no
related mixing, which provided motivation for our paper.

A. The general problem

A wind ~shear flow! is assumed to flow only in the laye
of light fluid (r1) and is zero in the heavy fluid (r2). Within
each layer, the governing equations are the continuity eq
tion

] tr1¹W •~ruW !50, ~2.1!

and the two-dimensional Euler equation

r] tuW 1ruW •¹W uW 52¹W P1rgW . ~2.2!

The equation of state closes the system, which is expre
in dynamical terms:

~] t1uW •¹W !P5
DP

Dt
5

gP

r

Dr

Dt
, ~2.3!

whereg is the polytropic exponent. The background dens
and pressure are in hydrostatic equilibrium,]yPo52rog.
The basic state is then defined by a shear flow@U(y)# in the
upper layer, and hydrostatic pressure (Po) and density pro-
files (ro). We perturb around this basic state

uW 5U~y!x̂1u8W , r5r0~y!1r8, P5P0~y!1p8,
(2.4)

and study the growth of the perturbations~primed variables!.
From Eq.~2.3!, the density and pressure perturbations sati
the relation
3-2
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Dp8

Dt
5cs

2 Dr8

Dt
1w8~gr01cs

2r0y!, ~2.5!

wherew8 is the vertical component of the perturbation v
locity, g is the gravitational acceleration, andcs5AgP0 /r0
is the sound speed for the background state. Upon expan
the perturbations in normal modeseik(x2ct), we obtain the
linearized equations in the perturbation quantities~where we
have dropped the primes for convenience!:

ik~U2c!u1w]yU52 ikro
21p,

ik~U2c!w52ro
21]yp2ro

21gr,

ik~U2c!r52ro~ iku1]yw!2w]yro , ~2.6!

ik~U2c!p2wgro5cs
2@ ik~U2c!r1w]yro#.

The above equations form an eigenvalue problem for
complex numberc. One immediately sees that the incom
pressibility condition¹W •uW 50 can be obtained by taking th
limit cs→`. Our problem simplifies greatly with this as
sumption. Therefore, we first present our results for the
compressible case, and then examine how compressib
modifies the stability properties.

B. The incompressible case

For the incompressible case we define a stream func
C such thatu5]yC and w52]xC. The two-dimensional
~2D! Euler equation thus reads

] t¹
2C2Cx¹

2Cy1Cy¹
2Cx50, yÞh. ~2.7!

The total stream functionC5C01c consists of a back-
ground stream functionC05*0

yU(z)dz and a perturbation
c5f(y)eik(x2ct). The linear equation forf is the well-
studied Rayleigh equation,

f92S k21
U9

U2cDf50. ~2.8!

The boundary conditions at the interface for the continuity
the normal component of the velocity and pressure are

~U2c!h̃2f650, ~2.9!

D$r i@~U2c!f82U8f#%1gh̃~r12r2!50, ~2.10!

whereD indicates the difference across the interface, anh̃

is the amplitude of the perturbed interface,h5h̃eik(x2ct).

C. The compressible case

For the compressible case, wherecs is comparable to the
background shear flow and the density stratification is n
negligible on the scales of interests, we start from the full
of Eqs.~2.6!. We obtain the following equations by elimina
ing r andu:
02631
ing

e

-
ity

n

f

-
t

ro~k2UG
2 1gkg1gks!w5 ikUG~]y1kg!p,

ik2~UG
2 /cs

221!p5rok~kgUG1]yUG2UG]y!w,
~2.11!

whereUG5U2c is the Galilean-transformed velocity in th
reference frame of the wave,ks5ro

21]yro is the inverse
stratification length scale, andkg5g/cs

2 . We further simplify
the equations by applying the transformation@25#

p5 f 21p̃, w5 iU Gq f , r̃o5rof 2

with f 5e*0
ykg(z)dz.

Equations~2.11! are then rewritten in terms of these var
ables as follows:

r̃~k2UG
2 1gkg1gks!q5k]yp̃,

k2~12UG
2 /cs

2! p̃5 r̃okUG
2 ]yq, ~2.12!

which can be combined to give@11#

]yS r̃oUG
2 ]yq

12UG
2 /cs

2D 2 r̃o@k2UG
2 1g~ks1kg!#q50. ~2.13!

We rewrite the above equation into canonical form. The
sulting equation is similar to the Rayleigh equation for t
incompressible flow, except for an additional stratificati
term 2g(ks1kg)/ŨG

2 f:

]y
2f2Fk21gr̃o

ks1kg

ŨG
2

1
]y

2ŨG

ŨG
Gf50 ~2.14!

where k25k2(12UG
2 /cs

2),ŨG5kUGAr̃o/k, and f

5qŨG /k52 ik21Arow(12UG
2 /cs

2)21. It can be shown that
the stratified Rayleigh equation can be recovered by tak
the limit of cs→`.

]y
2f2F k21g

ks

UG
2

1
]y

2~UGAro!

UGAro
Gf50. ~2.15!

Furthermore, we recover the unstratified Rayleigh equa
in the same limit, ifks1kg50 ~which corresponds to an
adiabatic atmosphere, as we will show later on!. Finally, the
boundary conditions at the interface are expressed in te
of ŨG andf

q5
f1

UG
1

5
f2

UG
2

5h̃, ~2.16!

using the continuity ofq and integrating Eq.~2.13! across the
interface we obtain
3-3
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D@ŨG]yf2~]yŨG!f2gr̃f/ŨG#50. ~2.17!

D. Wind profiles

In general, it is not trivial to determine the wind profile
strictly speaking, the wind profile should be determined
part of the solution of the evolution equation for the win
shear interface. However, it has been customary to simp
the problem by assuming ana priori analytical form for the
wind profile, and to use this in order to study the stabil
properties of the interface; thus, Miles@2# used a logarithmic
wind profile from turbulent boundary layer theory to mod
the wind profile in the air over the ocean. In this examp
the turbulence level in the wind is simply defined by t
scale height of the wind profile, which in turn simply d
pends on how ‘‘rough’’ is the boundary.

In our formulation, we shall also assume the wind profi
to be of simple form and scale distance with respect to
length scale of the wind boundary layer. In order to explo
the sensitivity of our results to the nature of this wind boun
ary layer, we will examine two different kinds of wind pro
files: the first is the logarithmic wind profileU(y)5U0
1U1ln(ay11), which is derived from turbulent boundar
layer theory for the average flow above the sea surface;
second is given byU(y)5U1tanh(ay), which has the more
realistic feature of reaching a constant finite flow spe
above the interface.

III. LINEAR ANALYSIS: INCOMPRESSIBLE CASE

We start with the stability analysis of the incompressib
case with constant densities in the two layers. The fluid
described by the Rayleigh Eq.~2.8! within each layer; and
we ignore surface tension for the time being. We solve
following equation in each layer:

fyy2S k21
Uyy

U2cDf50, fuy→6`50, ~3.1!

with boundary condition~at y50)

r2kc22r1@~U2c!2fy2~U2c!Uy#2g~r22r1!50,
(3.2)

where we have normalizedf by settingfuy5051.
We scale lengths bya21, the characteristic length of th

wind profile2 and the velocity by the reference velocityU1.
The dimensionless equation thus reads

fyy2S K21
Vyy

V2CDf50, fuy5051, fuy5`50;

~3.3!

and the boundary condition at the interface now become

2In oceanography, such a length scale is referred to as the ‘‘ro
ness’’ of the wind profile.
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where C5c/U1 ,K5k/a,G5g/U1
2a,V05U(0)/U1, and r

5r1 /r2.
For a given wind profile, the system then is characteriz

by the four parameters (K,G,V0 ,r ). ParameterG measures
the ratio of potential energy associated with the surface w
to the kinetic energy in the wind. The Richardson numb
defined in stratified shear flow is not useful in quantifyin
the stability in our case. However, as will be shown later,
find parameterG to be a good substitute in describing th
effect of stratification on the surface wave instability. In t
case of accretion flow on the surface of a white dwarfG
;1, while in the case of oceanic waves driven by wind
0.1,G,1.0. Table I lists the values ofG for a variety of
physical conditions.

The aim of our linear analysis then is to find the value
C in the complex plane as a function of these four para
eters, and to establish the stability boundaries in the sp
(K,G,r ,Vo); note that in our convention, Im$C%.0 implies
instability ~where Im$% refers to taking the imaginary part!.

A. Kelvin-Helmholtz modes and critical layer modes

Before solving this problem, some general remarks ab
the set of Eqs.~3.3!–~3.4! are required. We observe that i
the inviscid limit, if C is an eigenvalue, then so isC* ; there-
fore, we will have a stable wave only if Im$C%50. If that is
the case, then at the height whereVc[V(ycr)5C ~assuming
such a height exists! the Rayleigh equation has a singularit
this locationy5ycr is called the critical layer, and is wel
discussed in the literature@27,26#.

The existence of such a critical layer is crucial for t
presence of instability. One can prove~Appendix A! that our
system can be unstable only ifCr[Re$C%<Vmax. For the
case thatVo50, there always exists a point in the flow whe
Cr5V<Vmax for all unstable modes. We denote this point
a critical layer even ifC is complex, i.e.,Ci[Im$C%5” 0; and
thus, there is no singularity. However, ifVoÞ0, such a point
might not exist ~e.g., if Cr,Vo). In that case, the only
mechanism that can destabilize the flow would be a Kelv
Helmholtz instability. These two kinds of instabilities exhib
very different properties, both in terms of the physic
mechanisms involved, as well as in the mathematical tre
ment required. Hence, we need to distinguish between~i!
modes becoming unstable due to the discontinuity of
wind profile ~from now on, called KH-modes!, and ~ii !
modes becoming unstable due to the presence of a cri
layer ~from now on, called CL modes!.

h-

TABLE I. Approximate range for parameterG in three different
situations.

U1(cm s21) g(cm s22 a21(cm) G

Ocean 102;103 103 10;102 1021;1
Sun’s surface 102;105 104.3 106;107 101.3;106.3

WD 104;107 108 103;106 1;10
3-4
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The KH-modes have been studied for over a centu
here, we summarize the results for a step-function wind p
file and some of the features can also be found for other w
profiles @1#. The dispersion relation is given by

r2c21r1~c1U !25~r22r1!g/k, ~3.5!

whereU is the jump in velocity across the interface betwe
r1 and r2. The pressure perturbationr1(c1U)2, providing
the driving force for the instability, is always in phase wi
the wave, and is independent of the wavelength. The res
ing force (r22r1)g/k, on the other hand, is proportional t
the wavelength, and so we have instability when the wa
length is sufficiently small for the pressure to overcome
restoring force. In more physical terms, the flow stream lin
above the crests of the perturbed interface wave are c
pressed, and above the troughs are decompressed. Acco
to Bernoulli’s equation, the pressure above the crests
therefore decreased, and is increased above the troughs
wave thus becomes unstable when these destabilizing p
sure forces exceed the stabilizing effects of gravity. The d
persion relation

c5
r1

r11r2
U6Ag

k S r22r1

r11r2
D2

r1r2

~r11r2!2
U2, ~3.6!

also shows that the growth rate becomes positive only
wave numbersk.g(r2

22r1
2)/(U2r1r2).

The CL modes behave very differently. The solutions
Eq. ~3.3! near the critical layer for small or zeroCi have a
singular behavior. The two Frobenius solutions at the po
wherey5ycr are given by

fa5z1S ]y
2V

2]yV
D

cr

z21•••, ~3.7!

fb511S k2

2
1

]y
3V

2]yV
1

~]y
2V!2

~]yV!2D
cr

z21•••

1S ]y
2V

]yV
D

cr

fa~z!lnuzu, ~3.8!

wherez5y2ycr ~subscriptcr means ‘‘evaluated at the criti
cal point’’!. The singular behavior appears in the first deriv
tive of fb . The singularity is removed either becauseCi
50, in which case, the Frobenius solutions have the sa
form but ycr is now complex~so z never becomes zero!; or
because viscosity becomes important in this narrow reg
in which case, the inner solution can be expressed in term
generalized Airy functions@26,27#. In either case, the basi
result is that there is a phase change across the critical la
by which we mean that iff5afa1bfb is the solution for
the stream function above the critical layer, then the solut
below would bef5(a1 ipb)fa1bfb in the previous for-
mula. Physically, this means that the perturbation wa
above the critical layer is not in phase with the wave bel
this layer. Moreover, when we apply the boundary conditio
at the interface, since]yfu0 is now in general complex, the
02631
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solution of Eq.~3.4! will give a complex value ofC. That is,
the pressure gradient reaches minimum value not on to
the crests, but rather in front of the crests, where gravity d
not act as effectively as a restoring force. In particular,
destabilizing force is now nonzero at the nodes of the bou
ary displacement field~i.e., whereh50), where the gravita-
tional restoring force vanishes, but where the vertical vel
ity of the interface is maximum; thus, the forcing resemb
pushing a pendulum at its point of maximum velocity b
minimum displacement. Note that in this case, there is t
no cutoff for CL modes corresponding to the wave numb
cutoff due to gravity for KH modes.

Having discussed the physical mechanisms for desta
zation, we now turn to the implications for our choices
initial wind profiles. For wind profiles withVo50, one no-
tices that if we assumefy to be real and known, then th
complex eigenvalueC is obtained by solving Eq.~3.4!

C5
r 6Ar 214G~12r !~K2rfy!

2~K2rfy!
,

which will have a nonzero imaginary component only iffy
is positive and (K2rfy),0. However, the negative rea
part ofC implies that the surface wave would be traveling
the direction opposite to that of the wind—this case can
excluded on physical grounds~a more rigorous proof is
given in Appendix A, where we show thatCr.0). Thus, the
mechanism that gives rise to the unstable KH modes can
excluded. Thus, we conclude that surface waves become
stable in this case only if a critical layer exists. If we use t
logarithmic wind profile, we obtain unstable waves for a
wave numbers because ln(y11) is an unbounded function
therefore a pointy whereCr5V(y) exists for every value of
Cr . This however is not true for the tanh wind profile. B
cause waves withCr.Vmax are stable andCr ~in the absence
of surface tension! is a decreasing function ofK, there must
be a lower bound onK,Kmin , so that waves withK,Kmin
are stable, and unstable otherwise. The value ofKmin , in
general, will depend on the exact form of the wind profile.
Appendix B, we find the exact value ofKmin for a wind
profile of the formV512e2y,

Kmin5
G~12r !1r 2rA@G~12r !1r #21~12r 2!

12r 2
.

~3.9!

We remark the following about the previous formula. First
all, we note that although the previous result holds only
the specific wind profile used, it can provide a general e
mate of Kmin . Moreover, we note that, unlike the Kelvin
Helmholtz case, in the limitr→0,Kmin remains finite and
equal toG ~however, the growth rate goes to zero linea
with r, i.e., KCi;r ); this confirms that for small density
ratios CL modes dominate. Finally, by writing the wind pr
file in its dimensional formU5U1(12e2ay) and taking the
limit a→` ~which takes the wind profile to the limiting form
of a step function,U5U1 for y.0 andU150 otherwise!
we getkmin5g(12r )/U2 which is different from the result
3-5
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Kelvin-Helmholtz instability gives. We therefore conclud
that different limiting procedures lead to different results.

The situation is more complicated ifVo.0. No critical
layer exists forCr smaller thanVo . Hence, modes of suffi
ciently largeK become stable~e.g., there is a upper bound o
K for the unstable CL modes!. One notes thatC5Vo

5AG(12r )/K is a solution to Eq.~3.4!. This solution cor-
responds to the case where the critical layer is right at
interface. For slower modes than this (Cr,Vo), a critical
layer will not exist, and therefore the surface gravity mod
will be stable. Thus, CL-unstable modes exist only forK
,G(12r )/Vo

2 ; this result has been confirmed numerical
As K is increased, the discontinuity of the wind profile b
comes important and Kelvin-Helmholtz instability rises. T
system therefore will be unstable forK,KCL and for K
.KKH , whereKCL is the upper bound of the CL modes an
KKH is the lower bound for the KH modes. This implies th
there is a band of wave numbersKCL,K,KKH that corre-
sponds to stable modes, and separates the two uns
wave-number domains. However, as we will show later,
some values of the control parameters, this stable region
appears, and the two instabilities overlap.

B. Small density ratio

We are now ready to present results from the linear an
sis for the logarithmic and the tanh wind profiles. The exi
ing literature has primarily covered the case of smallr, with
the other parameters assumed to be of order one. In con
we are interested in covering a wider range of the con
parameters, and thus provide a complete description of
full dispersion relationC5C(K). We therefore briefly sum-
marize Miles’ results and move on to the general case.

Assuming the mass density ratior is a small number
~which is true for the air-over-water case! and the other pa-
rameters are of order one, Miles@2# expanded the eigenfunc
tion and the wave velocityC with respect tor

f5rf01r 2f11r 3f21~higher-order terms!,

C5C01rC11r 2C21~higher-order terms!;

~3.10!

one then obtains the zeroth order solution as a linear gra
wave with constant amplitude and phase speedC05AG/K.
At first orderO(r ), one finds

]y
2f02S K21

]y
2V

V02C0
Df050, ~3.11!

2KC0C12~V02C0!2]yf01~V02C0!1G50.
~3.12!

The asymptotic expansion breaks down at the critical po
y5ycr since to first orderC0 is real. Using the phase chang
of ip rule across the critical layer from theory@27#, Miles
obtains the growth rate of the perturbation at leading or
in r:
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Im~C1!5
1

2K
~V02C0!2Im$]yf0%

52p
~V02C0!2

2K S ]y
2V

]yV
D

cr

ufcru2, ~3.13!

where the last relation is obtained by multiplying Eq.~3.3!
with the complex conjugate off and taking the principal
value integral, with the contour going below the singulari
the subscript ‘‘cr’’ means evaluated at the critical point.

The first case we examine is when the velocity at
interface is zero. This simplifies things slightly because,
we discussed before, there are no Kelvin-Helmholtz unsta
modes in this case. The dispersion relation Im@C(K)# is
shown in Figs. 1~a! and 1~b! for the logarithmic and for the
tanh wind profile for various values ofG. The only differ-
ence between the two wind profiles appears at small w
numbers: the tanh wind profile~whose asymptotic wind
speed is bounded! does not permit waves traveling fast
than the wind to become unstable. For this reason, there
cutoff which can be found in our smallr approximation to be
at K5G for the tanh wind profile.

FIG. 1. Imaginary part ofC for r 50.001 ~a! logarithmic wind
profile, ~b! tanh wind profile. Note that the growth rate is given b
K Im$C%.
3-6
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Next, we look at the case whereV0.0. Now we have
both modes present. As discussed before, the CL mode
stable for wave numberK<KCL5G(12r )/Vo

2 . The KH
modes will appear whenVoK/G increases to order 1/r . If we
denote byKKH the minimum value ofK that the KH insta-
bility is allowed, then for the KH modes in the smallr limit
K scales as 1/r , and one can perform a regular perturbati
expansion for largeK, small r ~Appendix C! to find

fyuo52K2
1

2
K21

]y
2V

Vo2C
2

1

4 F ]y
3Vo

Vo2C
2

]y
2Vo]yVo

~Vo2C!2GK22

1•••, ~3.14!

C5ArAG

rK
2Vo

21rVo1•••,

and

KKH5
G

Vo2

1

r
2~VoV8uo1G!1•••.

The above resembles the result for a step-function w
profile except for small corrections due to the nonconst
velocity profile. Thus, for small density ratio, the differen
between the two modes is as discussed in Sec. III A. We
discuss the two instabilities in more detail in ther 5O(1)
case.

C. Large density ratio

For large density ratio, we solve the system of Eqs.~3.3!–
~3.4! directly. We focus on the instability properties of sp
cial interest, such as the maximum growth rate, the wa
length of the fastest growing mode, and the dependenc
the the stability boundaries on the parameters of the mo
First, we present results for cases where the wind has
velocity at the interface (Vo50) in Figs. 2~a!–2~c! and
3~a!–~c!. We solve Eqs.~3.3!–~3.4! numerically using a
Newton-Ralphson method; the results for both wind profi
logarithmic and tanh are presented together for compari
The plots suggest that for small enoughr, the dependence o
r is linear ~e.g., ther 50.001 case is proportional to ther
50.01 case by exactly a factor of 10.0!. For larger values of
r, the dependence is stronger than linear, and the smallK
modes seem to become more unstable.

We have repeated these calculations for the caseVoÞ0;
the results for the Im(C) are shown in Figs. 4~a!–4~c! and
5~a!–5~d!. In this case, we have to distinguish again betwe
the two different kinds of instabilities. The distinguishin
factor for the Kelvin-Helmholtz instability~most prominent
in the discontinuous wind profile! is that the growth rate is
positive only for wave numbers larger than some low
bound. However, the critical-layer instability, which owes
presence to the phase change in the critical layer, ha
upper bound in wave number for instability. Thus, in gene
there exists a band of wave numbers for which both mo
are stable. The difference between small and large den
ratios is that the two instabilities are not necessarily separ
02631
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and they do overlap for some parameters. The criterion fo
critical layer to exist in this case,AG(12r )/K>Vo , pro-
vides a upper bound onK for unstable CL modes. An exac
solution for the upper boundary is not available, but t
asymptotic behavior of the second boundary, for largeK and
for smallVo @cf. Eq.~3.14!# suggests that it takes the form o
K21/2; thus, the two stability boundaries are not expected
cross in the large-wave-number limit. However, the tw

FIG. 2. Imaginary part ofC for a logarithmic wind profile~a!
r 50.01, ~b! r 50.1, and~c! r 50.5.
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boundaries do meet for smallK and largeVo , as can be seen
in the stability boundary plots Figs. 6~a!–6~c!.

D. General features of the CL instability

The main goal of this paper is to establish the relevanc
the critical-layer instability under various astrophysical
geophysical conditions. Results from our linear analysis

FIG. 3. Imaginary part ofC for a tanh wind profile~a! r
50.01, ~b! r 50.1, and~c! r 50.5.
02631
of
r
l-

low us to identify the most unstable modes in different p
rameter regimes~and thus physical situations!. Furthermore,
the maximum growth rates give us an estimated time scal
the nonlinear evolution, and the length scale of the fast
growing mode allow us to estimate the thickness of the m
ing layer as instability grows; this allows us to provide rou
predictions of the physical conditions for which more exa

FIG. 4. Imaginary part ofC for a logarithmic wind profile and
Vo51.0 ~a! r 50.01, ~b! r 50.1, and~c! r 50.5.
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FIG. 5. Imaginary part ofC for a logarithmic wind profile withr 50.1 and~a! Vo50.0, ~b! Vo50.5, ~c! Vo51.0, ~d! Vo51.5.
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fully nonlinear calculations should be carried out to estab
the mixing zone properties more precisely. With this motiv
tion in mind, we show here how these two quantities beh
as functions of the physical parametersG,r , anda.

In Figs. 7~a!–7~b!, we have plotted the maximum growt
rateg[Im$CK%max of the perturbation as a function of th
control parameterG for the two wind profiles and for differ-
ent values ofr. It is clear in all cases that there is an exp
nential dependence onG for G*1. This might be expected
because increasing gravity leads to an increase of the
part ofC; therefore, the imaginary part off, that falls expo-
nentially with the distance from the critical layer, will hav
an exponentially smaller component at the interface. Furt
more, as the density ratior approaches unity, the dependen
on gravity becomes weaker. We plot the slopes of the cur
from Figs. 7 as a function ofr in Fig. 8. The dependence o
r is roughly linear~deviations from linearity will not be im-
portant sincer only takes values in the range 0,r ,1) ~see
Fig. 9!. This allows us to write an empirical scaling law fo
the dependence of the growth rate on the control parame

gmax[KCi.bre2a(12r )G. ~3.15!

For the logarithmic wind profile, we founda.2.8 andb
.0.10; while for the tanh wind profile we founda.2.9 and
b.0.18.
02631
h
-
e

-

al

r-

es

rs.

In Figs. 10~a! and 10~b! we have plotted the wave numbe
of the most unstable mode@whose growth rate correspond
to Eq.~3.15!# as a function ofG. We see that the wavelengt
of the most unstable mode highly depends on the wind p
file length scale. In particular, for fixed density ratior ,lmax
;a21; the dependence on gravity or onr is weaker.

IV. SURFACE TENSION

For the sake of completeness, we have also examined
case in which surface tension at the density interface
included.3 We again assume a wind shear profile of the fo
ln(y11) and tanh(y). The only change in our set of equation
to solve is then an additional term in the boundary conditi
Eq. ~3.4!. Hence,

KC22r @~V02C!2fy2~V02C!Vy#2G~12r !2TK250,
(4.1)

where T[sa/@r2U1
2)] and s is the surface tension (s

5B2/(2pmK) for the case of the magnetic field@1#!. We

3We note that a magnetic field in the lower fluid, whose directi
is aligned with the flow, would lead to an equivalent treatment~see,
for example,@1# Sec. 106!.
3-9
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show the resulting solutions, namely, the dispersion relatio
in Figs. 11~a!–11~c! and 12~a!–12~c!. As expected tension
decreases the growth rate and becomes important onl
large wave numbers.

An important result, which we have not previously se
derived, is that in the small density ratio limit, the real part
C ~to zeroth order inr ) is C05AG/K1TK, which has its

FIG. 6. Stability boundaries for~a! r 50.01, ~b! r 50.1, and~c!
r 50.5.
02631
s,

in

f

FIG. 7. Growth rate of the fastest growing mode as a function
G ~a! logarithmic wind profile,~b! tanh wind profile.

FIG. 8. Slopes of the previous graph as a function ofr @e.g., the
dependence of the exponent in Eq.~3.15! on r #.
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SHEAR INSTABILITY OF FLUID INTERFACES: . . . PHYSICAL REVIEW E 65 026313
minimum valueCmin5A2(GT)1/4 at K5AG/T. Thus, for
the case of a bounded wind profile~such as the tanh profile!,
there is a minimum value ofU1, given byCmin , so that a
critical layer can exist. We remind the reader that a sim
minimum velocity bound also exists for the Kelvin
Helmholtz instability, and is given by

U>A2

r
Ags

r2

'650 cm/sec,

where we have retained only terms of first order inr. For the
CL case, we have, instead,

U>A2Ags

r2

'20 cm/sec,

which differs from the previous bound by a factor ofAr .
~The numerical values shown here are derived for the cas
air blowing over water.! This illustrates the fact that for low
wind conditions, the CL instability dominates the KH inst
bility for driving water surface waves.

V. COMPRESSIBLE CASE

Finally, we consider the compressible case. We will co
sider a compressible fluid in the upper layer with sou
speedcs(y) and an incompressible fluid below. The dime
sionless equations we have to solve now are

]y
2f2Fk21G

r̃

ruy501

Ks1Kg

ṼG
2

1
]y

2ṼG

ṼG
Gf50, ~5.1!

KC22r @ṼG
2 uy50]yf2ṼGuy50]yṼGuy50#2G~12r !50,

(5.2)

where

FIG. 9. Intersections of the previous graph as a function or
@e.g., the dependence of the coefficient in front the exponentia
Eq. ~3.15! on r #.
02631
r

of

-
d

k25K2S 12
VG

2

Cs
2D , Ks5

]yr

ar
, Kg5G/Cs

2 ,

Cs5cs /U1

and

ṼG5
KVGAr̃/ruy501

k
with r 5ruy501 /ruy502.

We will assume for simplicity an adiabatic atmosphere

r5ruy501S 12~g21!
ro

gPo
gyD 1/(12g)

~5.3!

P5Puy50S r

ro
D g

. ~5.4!

This assumption, which is commonly used in the atmosph
cal sciences to simplify the physics involved, has the adv

in

FIG. 10. The dependence of the wave number of the fas
growing mode onG ~a! logarithmic wind profile,~b! tanh wind
profile.
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A. ALEXAKIS, Y. YOUNG, AND R. ROSNER PHYSICAL REVIEW E65 026313
tage thatKg1Ks50, so our equation becomes by one ord
less singular, and therefore becomes easier to solve.

We will not deal here with supersonic flows, since in mo
astrophysical realms in which interfacial wave generat
plays an important role~viz., on white dwarf surfaces!, the
relevant flows are thought to be subsonic; for this reason,
will consider only the tanh wind profile. We shall also de

FIG. 11. Imaginary part ofC for a logarithmic wind profile with
G50.5 in the presence of surface tension~a! r 50.01, ~b! r 50.1,
and ~c! r 50.5.
02631
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with small values ofG, so that the pressure scale height
large and the breakdown of the adiabatic assumption at
ues ofy;Ks

21 will not affect us either.
The dispersion relation for different values ofCs and for a

tanh wind profile is given in Figs. 13~a! and 13~b!. Com-
pressibility, as it can be seen from the figures, decreases
growth rate. This is an expected result, since our system
now more degrees of freedom~e.g., now the perturbation

FIG. 12. Imaginary part ofC for a tanh wind profile withG
50.5 in the presence of surface tension~a! r 50.01,~b! r 50.1, and
~c! r 50.5.
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SHEAR INSTABILITY OF FLUID INTERFACES: . . . PHYSICAL REVIEW E 65 026313
stores thermal energy as well!. We conclude, however, tha
the deviation from the incompressible case is not very la
even for relatively strong~but still subsonic! winds.

VI. DISCUSSION AND CONCLUSION

In this paper, we have explored the linear instability pro
erties of wind shear layers in the presence of gravitatio
stratification. Our principal aim was to explore the full p
rameter space of the solutions, defined by the four par
etersK ~the perturbation wave number!, G ~related to the
Richardson number, and measuring the relative energy
tributions of the gravitational stratification and the wind!, Vo
~the velocity discontinuity at the density interface!, andr ~the
density ratio!.

We have distinguished between the two different kinds
modes~Kelvin-Helmholtz modes and critical layer mode!
existing in our paper and constructed stability boundaries
those, as well as the dependence of these boundaries o
given parameters. As we will discuss later, the nonlinear
velopment of the instability~and therefore mixing! will cru-
cially depend on the kind of modes that become unsta
therefore, an investigation of the stability boundaries is n

FIG. 13. IM$C% for r 50.1 for the compressible case~a! G
50.1, ~b! G50.01.
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essary before the study of the nonlinear regime. An imp
tant result also derived from our analysis, allowing us
make predictions on the importance of the instability and
the nonlinear development, is the scaling of the growth r
with the parametersG and r in Sec. III D; our results show
that for (12r )G@1, strong mixing is not expected. Thi
result has an interesting implication: although, as expec
strong gravity~e.g.,G) inhibits mixing, one might still ex-
perience strong instability in the largeG case if the density
ratio of the interface is close to but not equal to unity. F
nally, we investigated the effects of surface tension and co
pressibility. With the inclusion of surface tension, we o
tained a lower bound onUmax for the instability to exist. We
also found that for subsonic winds, the instability growth ra
weakly depends on the Mach number.

As we have shown, there are significant differences
tween the CL and KH modes, both in the parameter range
which the instability can occur~e.g., the stability boundaries!
and in the magnitude of the growth rate; these differen
can be expected to result in different nonlinear evolution
the underlying physical system. For example, it is w
known that CL instability in the air-over-water case is r
sponsible for generating waves for winds of magnitude
low the threshold for which Kelvin-Helmholtz instability
exists@2#.

An important aspect not discussed as yet is the cas
which the spatial density variation is smooth instead of d
continuous. In our simplified model of a sharp interface,
distinction between the CL and KH modes emerges natur
from our analysis, simply based on the existence or abse
of a critical layer. In the more realistic~astro!physical case,
however, sharp velocity and density gradients do not ex
For this reason, we need to generalize our definitions for
two kinds of modes. We proceed by considering the phys
mechanisms involved in the instabilities: In the KH case,
mentioned above, the pressure perturbations are in p
with the gravity wave amplitude, and the wave becomes
stable when pressure overcomes the restoring force~e.g.,
gravity!. An immediate consequence of this is that when
restoring force is overcome, it no longer plays a role in t
wave propagation, and therefore, the real part ofc is inde-
pendent of the restoring force, i.e., independent ofg. This
argument can be confirmed by examining the results for
step-function wind profile, where we see precisely the p
dicted behavior.

In the CL case, it is instead the out-of-phase press
component that drives the wave unstable; in this case,
destabilizing pressure force does not strongly modify the
storing force~here, again, gravity!. Hence, the real part ofc
is only weakly modified when the mode becomes unsta
and therefore, the wave continues to propagate with
‘‘natural’’ speed while going unstable. These properties
wave destabilization, which affect the dependence of the
part of c on the restoring force, can therefore be used
distinguish between the CL and KH modes. Thus, in
more general case, we shall refer to the modes that bec
unstable due to an in-phase pressure component as
modes; their propagation speed is independent of~or at most,
weakly dependent on! the restoring force. In contrast, w
3-13
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A. ALEXAKIS, Y. YOUNG, AND R. ROSNER PHYSICAL REVIEW E65 026313
shall refer to the modes that become unstable due to an
of-phase pressure component as the ‘‘resonant modes’’~since
the name ‘‘critical layer’’ is not appropriate for the gener
case!; their propagation speed depends strongly on the res
ing force.4

By extrapolating our results to the smooth density var
tion case, we conclude that KH modes are likely to appea
cases in which the inflection point of the wind profile, or t
region in space in whichU changes, is at the same height
the region where the density changes. We note that the
instability, as defined in Sec. III A, is a limiting case of su
wind profiles. In contrast, resonant modes are more likely
appear when the regions of velocity and density change
well separated, where the coupling between an existing g
ity wave and a critical layer above can lead to a ‘‘resona
behavior as described above. This expectation is suppo
even further by the observation that in the case of a smoo
stratified fluid, the stratification term becomes dominant
the critical layer and the phase change is no longerip but
depends on the Richardson number.

We also note that, in the past literature on shear-flow
stability, much attention is focused on the KH instability a
cording to our definition. For example, models withU
;tanh(y) and ]yln(r);tanh(y) or r;exp(2y) have been
studied in the linear, weakly nonlinear, and fully nonline
regimes@27–30#, but they all fall into the KH category~as
we defined it!; a complete study of resonant modes, thou
has not been fully investigated. This is a gap we seek to c
in our future work.

From our results and the ranges of our physical para
eters in Table I, we can estimate the growth rates of
wind-driven waves as well as their typical wave length. F
the astrophysical problem we are interested in, we concl
that the growth rate can be as large as 1022 s21 with typical
wave lengths of the order ofa21; these results were obtaine
using the empirical formulas~3.15! and ~3.9!. For our moti-
vating astrophysical application, i.e., the nova mixing pro
lem, the results shown in Fig. 6 are especially importa
First, we note that the interface between the stellar surf
~at the typical densityr253800 g cm23) and the accreted
envelope~at the typical densityr15400 g cm23) is a ma-
terial ~gaseous! boundary at which one would not expect a
free slip. Thus, we would expectVo[Uo /U1 @in, for ex-
ample Eq.~1.1!# to be very small, and essentially zero. Co
sider then panel~b! of Fig. 6 ~for which r takes on the astro
physical relevant value!: we see that for smallVo , the
interface instability is completely dominated by the res
nantly driven modes; the classical KH instability only a
pears at very large wave numbers, e.g. very short wa
lengths, and therefore is unlikely to matter in the no
mixing problem. To go beyond this will require further in
vestigation of the nonlinear evolution of the CL instabili
and is currently under investigation; more information on
astrophysical model is provided in@22#. We discuss some o

4The words ‘‘weakly’’ and ‘‘strongly’’ are used here because it
expected that there is a smooth transition from the one case to
other as we change our physical parameters.
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the issues relevant to the nonlinear regime next.
Finally, we comment on the possible nonlinear develo

ment of the two types of modes we have studied. The n
linear evolution of a KH mode is in fact well studied in th
literature@28–30# and is known to lead to a mixed region o
width roughly equal to the wavelength of the mode; inde
mixing proceeds in this case until~roughly speaking! the
Richardson criterion holds throughout the flow. In the case
the CL modes, the nonlinear evolution is affected by the f
that a length scale enters the problem, namely, the heigh
the critical layeryc which can be substantially larger than th
mode wavelength. Thus, one might expect that mixing p
ceeds until heights of orderyc are reached by the mixing
layer, and therefore, we expect more extensive mixi
Clearly, the next steps in this study involve investigation
the weakly nonlinear regime~to examine supercriticality and
possible saturation of the modes!, as well as the fully non-
linear regime~through numerical simulations! @31#. A par-
ticularly interesting question is to what extent the expec
wave breaking of the CL modes~cf. @22#! can lead to en-
hanced mixing at the shear-density interface.
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APPENDIX A: EXTENSION OF HOWARD’S SEMICIRCLE
THEOREM

We begin from

fyy2S K21
Vyy

V2CDf50, fuy5051, fuy5`50,

~A1!

and

KC2f2r @~V02C!2fy2~V02C!Vyf#2G̃f50,
~A2!

whereG̃ is the restoring force@G̃5G(12r ) for the simplest
case#, 0,G̃,0,K, and we assumeCi5” 0. Let VG5V2C,
and letc5f/VG andD[]y . Note that

VG
2 Df2VGfDVG5VG

3 Dc.

The boundary condition can then be written as

rVG
3 Dc5KC22G̃. ~A3!

From Eq.~A1!, we obtain

VGD2c12DVGDc2VGK2c50; ~A4!

multiplying the last relation withVGc* and integrating, we
obtain

he
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c* VG
2 D2c1c* DVG

2 Dc2VG
2 K2ucu250,

so that

D@cVG
2 Dc#2VG

2 uDcu22VG
2 K2ucu250

and

2@c* VG
2 Dc#02E

0

`

VG
2 @ uDcu1K2ucu2#dy50;

using the normalization condition, and denoting byQ(y)
5@ uDcu1K2ucu2#>0, we then have

1

VG*
VG

2 KC22G̃

VG
3

52r E
0

`

~VG!2Qdy,

so that

KC22G̃

uVGu2
52r E

0

`

~V2C!2Qdy. ~A5!

Taking the imaginary part, we obtain

K~2CrCi !

uVGu2
5r E

0

`

2Ci~V2Cr !Qdy

KCr

uVGu2
5r E

0

`

~V2Cr !Qdy. ~A6!

Therefore,

0,Cr,Vmax ~A7!

i.e., a wind cannot generate waves traveling faster than
maximum speed. Now, taking the real part, we obtain

K~Cr
22Ci

2!2G̃

uVGu2
52r E

0

`

@V222VCr1Cr
22Ci

2#Qdy,

~A8!

or

K~Cr
22Ci

2!2G̃

uVGu2
52r F E

0

`

V2Qdy22CrE
0

`

VQdy

1~Cr
22Ci

2!E
0

`

QdyG ,
or

K~Cr
22Ci

2!2G̃

uVGu2
52r F E

0

`

V2Qdy22Cr H KCr

r uVGu2

1CrE
0

`

QdyJ 1~Cr
22Ci

2!E
0

`

QdyG ,

so that
02631
its

0,
KuCu21G̃

uVGu2
5r E

0

`

@V22uCu2#Qdy ~A9!

and

Cr
21Ci

2,Vmax
2 , ~A10!

which is the sought-for result.

APPENDIX B: LOWER BOUND ON THE CL-UNSTABLE
MODES

Consider the wind profileV512e2y; then Eqs.~3.3! and
~3.4! become

fyy2S K22
e2x

12e2x2C
D f50 ~B1!

and

C22r @C2fy1C#2G~12r !50. ~B2!

We are interested in the value ofK for which our system
becomes marginaly unstable. From the extension
Howard’s semicircle theorem to our case we know that
Cr greater thanVmax the system is stable, so the instability
expected to start whenC5Vmax51. Using this value forC
we obtain from Eq.~B1!

fyy2~K211!f50; ~B3!

therefore,f5e2yAK211 and from Eq.~B2! we then have

K2r @2AK21111#2G~12r !50, ~B4!

which by solving gives us

Kmin5
G~12r !1r 2rA@G~12r !1r #21~12r 2!

12r 2
.

~B5!

Numerical integration confirms this result.

APPENDIX C: KH MODES IN THE SMALL r1 Õr2 LIMIT

We begin with the Rayleigh Eq.~3.3! for largeK

fyy2S K21
Vyy

V2CDf50.

Setz5Ky ande51/K; we then have

fzz2S 11e2
Vzz~ez!

V~ez!2CDf50

or

fzz2@11e2F~ez!#50,

whereF(x)5Vzz(x)/@V(x)2C#. Expandingf in powers of
e2,
3-15
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f5f01e2f11e4f21 . . . ,

we obtain, to first order,

f05e2z;

at the next order, we have

f1zz2f15F~ez!f0 ,

which has the solution

f15E G~ uz2xu!F~ex!f0~x!dx1Ae2z,

whereG52 1
2 e2ux2zu is the Green’s function andA is a con-

stant to be chosen so thatf1 will satisfy the boundary con-
dition at zero

f1~z!52
1

2E0

z

e2(z2x)e2xF~ex!dx

2
1

2Ez

`

e2(x2z)e2xF~ex!dx1Ae2z

2
1

2
e2zE

0

z

F~ex!dx2
1

2
ezE

z

`

e22xF~ex!dx

1S 1

2E0

`

e22xF~ex!dxD e2z

52
1

2
e2zF E

0

z

F~ex!dx1E
0

`

e22wF@e~w1z!#dw

2E
0

`

e22xF~ex!dxG ~w

5x2z!.

We are interested in the first derivative off at zero, so we
can obtain

df1

dz Uz5052
1

2
e2z

d

dzF E
0

z

F~ex!dx

1E
0

`

e22wF@e~w1z!#dw

2E
0

`

e22xF~ex!dxGU
z50

52
1

2
e2zFF~0!1

d

dzS e2zE
z

`

e22xF~ex!dxD GU
z50

52
1

2
e2zFF~0!12E

0

`

e22xF~ex!dx2F~0!GU
z50
02631
52e2zE
0

`

e22xF~ex!dxUz50

52E
0

`

e2xS F~0!1e
x

2
F8~0!1e2

1

2 S x

2D 2

F9~0!

1 . . . Dd
x

2

52
1

2
F~0!2

1

4
eF8~0!1

1

8
e2F9~0!1•••.

Therefore the final result for the first derivative off at zero
is

fyuz5052K2K21
1

2

V9u0
Vo2C

2
1

4
K22F V-u0

Vo2C
2

V9u0V8u0

~Vo2C!2G1•••.

Applying the boundary condition~3.4! at the interface,

KC22r @~Vo2C!2fyu02~Vo2c!V8u0#2G~12r !50,

we obtain

KC22r F2K~Vo2C!22K21
1

2
~Vo2C!V9U0

1•••2~Vo2C!V8U0G2G~12r !50.

ScalingK andC so thatK5k/r andC5Arc, and substitut-
ing we have

kc21k~Vo2Arc !21r 2k21
1

2
~Vo2Arc !V9u01r ~Vo

2Arc !V8u02G1rG50.

If we expandc in powers ofr 1/2,

c5c01c1/2r
1/21c1r 1c3/2r

3/21•••,

we can obtain each term separately. Here, we give only
first few terms

c0 : kc0
21kVo

25G⇒co5AG/k2Vo
2;

c1/2: 2kcoc1/222kVoc050⇒c1/25Vo ;

c1 : kc1/2
2 12kc0c11kc0

222kVoc1/21kc0
21VoV8u01G50

⇒c152
3

2
c02

1

2
VoV8u0 /c0 .
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