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Forced stratified flows are shown to suffer two types of linear long-wave instability: a
‘viscous’ instability which is related to the classical instability of Kolmogorov flow, and
a ‘conductive instability’, with the form of a large-scale, negative thermal diffusion.
The nonlinear dynamics of both instabilities is explored with weakly nonlinear theory
and numerical computations. The introduction of stratification suppresses the viscous
instability, but also makes it subcritical. The second instability arises with stronger
stratification and creates a prominent staircase in the buoyancy field; the steps of
the staircase evolve over long timescales by approaching one another, colliding and
merging (coarsening the staircase).

1. Introduction
Stratified shear flows arise frequently in geophysical and astrophysical fluid

dynamics. A central issue in such contexts is understanding how eddying unsteady
motion arises from a steady flow or forcing, and how that motion can re-arrange
and transport the fluid properties. In this article, we continue an exploration of a
particular model problem in which the dynamics is accessible to an unusual degree
of analysis. More specifically, we study the fully stratified version of the so-called
Kolmogorov flow, which was originally advocated as a convenient theoretical construct
for understanding unstratified shear flow dynamics and the transition to turbulence.
Instabilities of Kolmogorov flow exhibit the property of inverse cascade: although
instabilities can be seeded on moderate length scales, energy is continually transferred
via nonlinear mechanisms to longer lengthscales. In our previous article (Balmforth &
Young 2002), we showed how the cascade is arrested by relatively weak stratification.
This arrest is also implicit in much of the exploration described in the current article.
However, it does not provide our main focus, which lies in a different direction.

Laboratory experiments and oceanic observations have both revealed that flows
in stably stratified fluids can generate ‘staircases’ of well-mixed layers separated by
sharp interfaces. In the laboratory, staircases have been created by dragging grids or
bars through tanks of salt-stratified water (Park, Whitehead & Gnanadeskian 1996;
Holford & Linden 2000); in the ocean, mixing by the motions of the ever turbulent
environment is assumed to have the same effect (Schmitt 1994). Small-scale fingering
instability due to double diffusion is also thought to create large-scale staircases
without externally driven flows (Radko 2003), and turbulent thermohaline convection
has been seen to generate stacked layers in the laboratory and solar ponds (e.g.
Turner 1985). Although it has never been shown explicitly, it is commonly assumed
that a turbulent flow field is an essential ingredient in the layering problem. That
is, that the Reynolds number of the mixing flow must be very large. Based on this
premise, several authors constructed crude models of turbulent stratified fluids and
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thereby rationalized the layering process (Phillips 1972; Posmentier 1977; Balmforth,
Llewellyn Smith & Young 1998). These models typically rely on simple, sometimes
empirical, parameterizations of turbulent transport, and formulate a non-monotonic
relation between the density flux and the density gradient (the ‘flux–gradient relation’).
The underlying notion is that wherever the flux decreases with the gradient, the
stratification is unstable and small fluctuations will seed the growth of sharp steps via
negative diffusion.

One of our purposes in the present article is to show that staircases can also result
for much lower Reynolds numbers, when the mixing flows are laminar. This opens
up the problem to analytical explorations based on the governing equations of fluid
mechanics, rather than crude turbulence parameterizations. In particular, by using
the method of multiple scales, we establish that instability can occur in the form of
negative diffusion, and determine the flux–gradient relation explicitly in the vicinity
of the onset of instability. Staircases can then be predicted to occur; we examine the
robustness of layering within this formulation. Our analysis is similar to that used to
compute eddy diffusivities in homogeneous fluid (Gama, Vergolassa & Frisch 1994),
and there are analogies with stability theories of Rossby waves (Lorenz 1972) and
internal gravity waves (Drazin 1978; Kurgansky 1979, 1980; Lombard & Riley 1996)
which have applications to atmospheric dynamics and to oceanic mixing (Thorpe
1994).

Our analysis proceeds by way of multiple scales, assuming that instability arises on a
much longer spatial scale than the intrinsic lengthscale of the steady flow pattern that
is set up by a suitable body forcing of the fluid (the Kolmogorov flow). This analysis
detects linear, long-wave instability (§ 2) which we then continue on to explore at the
finite-amplitude level using weakly nonlinear techniques (section § 3) and numerical
computation (section § 4).

2. Formulation and linear theory
2.1. Governing equations

We begin with the basic equations for a forced fluid in the Boussinesq approximation.
After introducing a streamfunction, ψ(x, z, t), and the buoyancy field, b(x, z, t)
(representing an agent such as temperature or salinity), which describe the deviation
from the motionless (linearly) stratified state, these equations are

∇2ψt + Jx,z(ψ, ∇2ψ) = bx + ν∇4ψ − ν∇4ϕ, (2.1)

bt + Jx,z(ψ, b) + N2ψx = κ∇2b, (2.2)

where ϕ represents the forced source of vorticity,

Jr,s(f, g) = frgs − fsgr (2.3)

is the Jacobian of the functions f and g with respect to the coordinates r and s, ν

is the viscosity, κ the conductivity, and N2 the buoyancy frequency arising from the
background linear stratification. For practical purposes, we take

ϕ = ϕ0 sin(kx − mz),

where ϕ0 is the amplitude of the forcing, and the wavenumbers, (k, m), determine the
tilt with respect to the vertical. This forcing generates a steady equilibrium flow of
the form (u, w) = Ψ (m, k) cos(kx − mz), where Ψ is a constant. We impose periodic
boundary conditions in the horizontal, and delay discussion of the vertical boundary
conditions until later.
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We place the equations in a non-dimensional form using units given by the forcing;
that is, the lengthscale, K−1, and the timescale, ϕ0K

2, where K2 = k2 + m2. We define
x ′ = Kx, z′ =Kz, t ′ =ϕ0K

2t , ψ ′ =ψ/ϕ0 and b′ = K3ϕ2
0b. On substitution into (2.1)–

(2.2), and discarding the primes, we arrive at

∇2ψt + Jx,z(ψ, ∇2ψ) = bx + Re−1(∇4ψ − cos φ), (2.4)

bt + Jx,z(ψ, b) + βψx = Pe−1∇2b, (2.5)

where φ = x cos θ + z sin θ , with m =K sin θ and k = K cos θ , the dimensionless
groups, Re = ϕ0/ν and Pe =ϕ0/κ , denote the Reynolds and Péclet numbers, and
β = N2/(ϕ2

0K
4) is a stratification parameter somewhat like a Richardson number.

2.2. Multiple-scale expansion

We introduce

∂t → ε2∂T , ∂z → ∂z + ε∂Z, (2.6)

where T ≡ ε2t and Z ≡ εz denote a slow timescale and a long lengthscale (a
corresponding long scale for x turns out to be not necessary because the first
solvability conditions that one then encounters demand that there be no variation on
such a scale, at least for order-one β). With these rescalings

ε2
[
∂2

x +(∂z +ε∂Z)2
]
ψT +Jx,z(ψ, ψxx +(∂z +ε∂Z)2ψ)+εJx,Z(ψ, ψxx +(∂z +ε∂Z)2ψ)

= bx + Re−1
[
∂2

x + (∂z + ε∂Z)2
]2

ψ − Re−1 cosφ, (2.7)

ε2bT + Jx,z(ψ, b) + εJx,Z(ψ, b) + βψx = Pe−1
[
∂2

x + (∂z + ε∂Z)2
]
b. (2.8)

Over the shorter spatial scales, (x, z), we look for solutions that have the same
periodicity as the forcing; these patterns are modulated on the long spatial scale Z

and over the slow time.
It is useful to quote the averages over the (x, z)-scales:

εψT + ψxψZ = εRe−1ψZZ, εbT + (ψxb)Z = εPe−1bZZ, (2.9)

where the bar denotes the average over a spatial period of the forcing, and we have
integrated the first relation twice in Z, assuming the integration constants vanish by
virtue of the boundary conditions in Z.

We now introduce the asymptotic sequences,

ψ = ψ0 + εψ1 + · · · , b = b0 + εb1 + · · · , (2.10)

and collect together terms of like order. At order one,

Re b0x +
(
∂2

x + ∂2
z

)2
ψ0 − Re Jx,z(ψ0, ψ0xx + ψ0zz) = cosφ, (2.11)

βPe ψ0x −
(
∂2

x + ∂2
z

)
b0 + Pe Jx,z(ψ0, b0) = 0, (2.12)

with solution,

ψ0 = ψ0(Z, T ) +
cosφ

1 + G
, b0 = b0(Z, T ) +

βPe sinφ cos θ

1 + G
, (2.13)

where G =βRePe cos2 θ .
At the following order:

Re b1x +
(
∂2

x + ∂2
z

)2
ψ1 = −Re ψ0Z sinφ cos θ

1 + G
+ N1, (2.14)
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βPe ψ1x −
(
∂2

x + ∂2
z

)
b1 =

βPe2ψ0Z cosφ cos2 θ

1 + G
+

Pe b0Z sinφ cos θ

1 + G
+ N2, (2.15)

where N1 and N2 are nonlinear terms that vanish for the solution,

ψ1 = ψ1(Z, T ) +
Re cos θ

(1 + G)2
[(βPe2 cos2 θ − 1)ψ0Z sinφ + Peb0Z cos θ cosφ], (2.16)

b1 = b1(Z, T ) +
Pe cos θ

(1 + G)2
[(Re + Pe)βψ0Z cos θ cosφ − b0Z sin φ]. (2.17)

We substitute these solutions into the average equations to find two diffusion
equations,

Re ψ0T =

[
1 − Re2(1 − σG) cos2 θ

2(1 + G)3

]
ψ0ZZ, (2.18)

Pe b0T =

[
1 − Pe2(G − 1) cos2 θ

2(1 + G)3

]
b0ZZ, (2.19)

where σ = ν/κ is the Prandtl number.

2.3. Critical conditions

The diffusivities in (2.18)–(2.19) are not positive definite. Indeed, for certain choices
of the parameters, these quantities may become negative, signifying a long-scale
instability. Each equation provides an instability condition:

1 <
Re2(1 − σG) cos2 θ

2(1 + G)3
, 1 <

Pe2(G − 1) cos2 θ

2(1 + G)3
. (2.20)

At this stage, we observe that the only effect of θ is to rescale the Reynolds and
Péclet numbers, and so the inclination of the forcing has a minor effect on the linear,
long-wave dynamics. For brevity we therefore set θ = 0 hereafter.

Mathematically, it is convenient to select Re, σ and G as the governing parameters
of the problem. We may then translate the conditions in (2.20) into the critical
Reynolds numbers,

Re > Re1 =

√
2(1 + G)3/2

(1 − σG)1/2
, Re > Re2 =

√
2(1 + G)3/2

σ (G − 1)1/2
. (2.21)

If G = 0, Re1 →
√

2 whereas Re2 ceases to exist. The former is the instability threshold
of the usual Kolmogorov instability (Meshalkin & Sinai 1960), which can be seen
from (2.18) to result from a negative effective viscosity. As shown in figure 1, the
instability becomes modified by stratification, and even removed, when G is increased
from zero. Thus, Re1 characterizes a familiar long-wave instability that we refer to
as ‘viscous’. The nonlinear dynamics of the weakly stratified viscous instability was
considered by Young (1999) and Balmforth & Young (2002).

The other critical threshold, Re2, corresponds to a second type of instability which
(2.19) reveals to result from negative conduction. This second mode of instability
appears only at higher stratification (G or β), and we refer to it as ‘conductive’. The
two instabilities typically appear in different parts of parameter space, although they
can be coincident when σ < 1 (see figure 1). The instabilities appear simultaneously
for Re1 = Re2, which demands that

G =
1 + σ 2

σ (1 + σ )
. (2.22)
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Figure 1. Critical Reynolds numbers, Min (Re1,Re2), against G for θ = 0 and several values
of Prandtl number (as labelled).
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Figure 2. The critical Reynolds numbers Re1 and Re2 against the stratification parameter,
β , for σ =1/2, 1 and 2. The limiting thresholds as β → 0 are also indicated.

In cases in which β is the dimensionless parameter that can be prescribed, G

is not a suitable parameter to parameterize the critical thresholds of the system
because G = σβRe2. However, eliminating G in favour of β complicates the critical
conditions, and Re1 and Re2 cannot be found in closed form. Instead, we show sample
critical thresholds computed numerically against β for different Prandtl numbers in
figure 2. This figure illustrates how stratification stabilizes the viscous instability at
large Reynolds number, and completely removes instability for any Reynolds number
beyond a σ -dependent value. The instability window of the conductive mode is
similar, but typically lies at higher Reynolds number and only overlaps the region
of viscous instability for σ < 1. The values of β and Reynolds number for which
the two instabilities disappear entirely (that is, the values at the nose of the stability
boundaries in figure 2) are shown against Prandtl number in figure 3. Note that the
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Figure 3. (a) The Reynolds numbers, Re1 and Re2, and (b) stratification parameter, β , plotted
against σ at the ‘nose’ of the long-wave stability boundaries (i.e. the values of Rej and β for
which instability disappears entirely). The limiting values for σ → 0 and ∞ are indicated.

stabilizing effect of stratification, and specifically the removal of the instability for
any Reynolds number beyond a critical value of β , is reminiscent of the celebrated
Richardson number criterion. However, the basic flow is in the direction of gravity
here, and the critical threshold in β has a novel dependence on Prandtl number, as
illustrated in figure 3.

Note that the theory identifies only long-wave instabilities. However, instabilities
with finite wavenumber are also possible, and these would lead to more windows
of instability elsewhere in parameter space. Some confidence that long waves are
responsible for instability comes from the numerical solutions of § 4 at isolated
parameter values, although these computations also uncover other instabilities. A
more systematic approach would entail a detailed numerical exploration of the linear
stability problem for arbitrary wavenumber.

3. Nonlinear theory
We next demonstrate that layering is expected in the mildly nonlinear stages of

the instability discussed above. We proceed by deriving a Cahn–Hilliard equation
through a weakly nonlinear asymptotic expansion, an equation that is known to
possess solutions in the form of layers. We perform this construction for both the
viscous and conductive instabilities (taking θ = 0).

For both instabilities, we again introduce the long scale, Z = εz, and rescale time,
but in a slightly different way: ∂t → ε4∂τ (τ = ε4t). Then, the governing equations
become

ε4
(
∂2

x + ε2∂2
Z

)
ψτ + ε(ψxψxxZ − ψZψxxx) + ε3(ψxψZZZ − ψZψxZZ)

= bx + Re−1
(
∂2

x + ε2∂2
Z

)2
ψ − Re−1 cos x, (3.1)

ε4bτ + ε(ψxbZ − ψZbx) + βψx = Pe−1
(
∂2

x + ε2∂2
Z

)
b. (3.2)

3.1. Weak conductive instability

To derive the Cahn–Hilliard model in the conductive case, we begin with a flow on
the brink of instability, and then kick the system into the unstable regime by slightly
modifying the parameter values. In particular, we focus on the specific parameter
choices,

β = 3Re−1
√

6(2 + εG1), Pe−1 =
1

3
√

6
+ ε2κ2. (3.3)



Stratified Kolmogorov flow. Part 2 29

That is, we tune both β and Pe, treating Re as a free parameter. The two choices in
(3.3) are necessary for reasons that will be discussed later; essentially, we obtain the
Cahn–Hilliard equation only at a codimension-two point where the coefficient of the
leading quadratic nonlinear term is forced to vanish.

We begin again from the governing equations in the forms (3.1)–(3.2), but now
choose the leading-order solution,

ψ0 = 1
3
cos x, b0 = B(Z, τ ) +

2

3Re
sin x. (3.4)

The significance of this choice is that in (2.18)–(2.19) there are two long-wave modes
evolving on the t ∼ ε−2 timescale: a viscous mode and a conductive mode. Only the
second of these modes is marginally stable for G1 = κ2 = 0, and therefore evolves even
more slowly on the t ∼ ε−4 time. The viscous mode, on the other hand, at this point is
more heavily damped. As a result, we assume that the mode decays to low amplitude
before the conductive mode begins to grow (which does not, in fact, always remain
true as shown by computations reported below), leading us to include only the slow
mode, B(Z, τ ).

At the next order, we find

Re b1x + ψ1xxxx = 0, 2ψ1x − Re b1xx = 1
3
(3Re

√
6BZ + G1) sin x. (3.5)

We take

ψ1 = −
(

Re
√

6

3
BZ +

G1

9

)
cos x, b1 =

(√
6

3
BZ +

G1

9Re

)
sin x. (3.6)

At order ε2,

Re b2x + ψ2xxxx = 0, (3.7)

2ψ2x − Re b2xx = −3ReBZZ cos 2x −
[(

G1

3
+

√
6ReBZ

)2

+ 2κ2

√
6

]
sin x, (3.8)

which we solve with

ψ2 =
1

3

[(
G1

3
+

√
6ReBZ

)2

+ 2κ2

√
6

]
cos x − Re

12
BZZ sin 2x, (3.9)

b2 = − 1

3Re

[(
G1

3
+

√
6ReBZ

)2

+ 2κ2

√
6

]
sin x − 2

3
BZZ cos 2x. (3.10)

The third-order equations and their solution proceed in much the same way. For
brevity, key formulae are relegated to the appendix. Finally, we insert the solutions
for ψ and b into the horizontal averages of the governing system to arrive at the
amplitude equation,

Bτ = 2

(
κ2 +

G2
1

√
6

108

)
BZZ −

(
13

√
6

72
+

Re

108

)
BZZZZ +

G1Re

3

(
B2

Z

)
Z

+

√
6Re2

3

(
B3

Z

)
Z
.

(3.11)

When expressed in terms of a new variable φ = BZ , this expression has the form of
the Cahn–Hilliard equation (the term, B2

Z , can be eliminated by setting BZ = φ + C,
where C is a suitable constant, placing the system in the usual Cahn–Hilliard form).

Note that the nonlinearity is cubic in (3.11). This resulted entirely because the
coefficient of the otherwise leading quadratic term (B2

Z)Z is proportional to (G − 2),
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and we successfully pushed that term to the same order as the cubic nonlinearity by
making the codimension-two parameter choices in (3.3). Quadratic nonlinear terms
cannot be discounted by symmetry arguments in the current expansion because the
governing system has the reflection symmetry transformations, (x, ψ) → (−x, −ψ)
and (x, z, b) → (−x, −z, −b). From these symmetries alone, we see that the amplitude
cannot be the standard Cahn–Hilliard equation, because that equation is invariant
under the independent transformations, B → −B and Z → −Z.

A Lyapunov functional exists for the Cahn–Hilliard equation which predicts that
the evolution of the system is the inexorable convergence to the steady solution with
the largest spatial scale (e.g. Chapman & Proctor 1980). The convergence, however,
can be delayed for long periods by meta-stable states consisting of a sequence of layers
separated by slowly drifting interfaces. (An illustration of the coarsening process is
given below.) It is this property of the Cahn–Hilliard model that leads us to predict
that layering can result in laminar flows.

3.2. Weak viscous instability

The marginal stability condition for viscous instability, viewed as a critical Reynolds
number, Re = Rec, is

Re2
c =

2(1 + G)3

1 − σG
, (3.12)

which also fixes the Péclet number given the Prandtl number. To push the system into
a weakly unstable regime, we set Re =Rec + ε2Re2, and again perform an asymptotic
expansion. We begin with the sequences,

ψ = ψ0 + εψ1 + · · · , b = b0 + εb1 + · · · , (3.13)

and select a leading-order solution,

ψ0 = A(Z, τ ) +
1

1 + G
cos x, b0 =

G

Re(1 + G)
sin x, (3.14)

which, this time, contains only the slow viscous mode.
At order ε2, we find the relations,

ψ1xxxx + Recb1x = Rec(ψ0xψ0xxZ − ψ0Zψ0xxx), (3.15)

Gψ1x − Recb1xx = σRe2
c(b0xψ0Z − b0Zψ0x), (3.16)

which are solved by

ψ1 =
Re(σG − 1)

(1 + G)2
AZ sin x, b1 = B1(Z, τ ) +

G(1 + σ )

(1 + G)2
AZ cos x. (3.17)

In (3.17), we add a mean buoyancy term; it turns out that this is necessary because
the slow viscous mode forces a mean response in b at order ε, as is clear from the
vertical average of (3.2), which provides the relation,

σRec(ψ1xb1Z − ψ1Zb1x − ψ2Zb0x + ψ0xb2Z − ψ0Zb2x) = b1ZZ ≡ B1ZZ, (3.18)

at order ε3. The left-hand side does not, in general, vanish, thus forcing B1. We delay
the construction of this quantity until we solve the system at next order. We again
place some of the details in the Appendix, and arrive at the relation,

B1ZZ =
σG(1 − 2Gσ + σ 2)

(
A2

Z

)
Z

(1 + G)(1 + σ 2 − σG − σ 2G)
≡ Γ

(
A2

Z

)
Z
. (3.19)
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At this stage we must make some statement about boundary conditions in Z; we
adopt periodicity in this direction. The integral of (3.19) then implies that

B1Z = Γ
(
A2

Z −
〈
A2

Z

〉)
, (3.20)

where the angular brackets denote the average in Z.
Finally, we proceed to third order and evaluate the vertical average of (3.1). This

leads to the amplitude equation:

Aτ =

[
Re3

cσ (5 − 2σG + 3σ )

6(1 + G)4
Γ

〈
A2

Z

〉
− 2Re2

Rec

]
AZZ

− 3Rec

2(1 + G)5

[
1 − σG +

σ 2Re2
cG(σG − 8σ − 3)

24(G + 1)(G + 16)

]
AZZZZ

+
Re3

c

6(1 + G)4

[
σΓ (5 − 2σG + 3σ ) +

2 − 6σG + σ 2G(G − σG − 3σ − 5)

1 + G

](
A3

Z

)
Z
.

(3.21)

If G =0, this equation reduces to a Cahn–Hilliard equation for the variable, AZ ,
and is equivalent to a system derived previously by Sivashinksy (1985). However,
with G 	=0, it is not precisely of Cahn–Hilliard form because of the non-local term

involving A2
Z .

The negative diffusion term in (3.21) amplifies gradients of AZ , and therefore BZ .
These gradients continue to sharpen as the instability operates, but can saturate when
the nonlinear diffusion term comes into play. In the standard Cahn–Hilliard system,
such a saturation is guaranteed if the coefficient in front of the cubic nonlinearity,
(A3

Z)Z , is positive. For our model in (3.21), the cubic coefficient is indeed positive when
the stratification parameter, G, is small. However, as G increases, the cubic coefficient
decreases and can eventually change sign. In this circumstance, one anticipates that the
leading nonlinearity cannot saturate the sharpening of the interfaces, but accelerates
it until further nonlinear terms become important. This situation is analogous to a
subcritical bifurcation (a connection that can be made firmer by decomposing A into
normal modes in Z and performing a standard amplitude expansion). In other words,
by stratifying the fluid, we can force the viscous instability to become subcritical,
creating a ‘harder’ transition at onset. Also, with the non-local term, 〈A2

Z〉, it is
not clear what remains of the coarsening dynamics described by the Cahn–Hilliard
equation. We solve a more general version of the amplitude equation (3.21) below to
shed some light on this second issue.

3.3. Long-wave equations by projection

An alternative approach to the asymptotic expansion above is provided by a Galerkin
projection of the form,

ψ = A(z, t) +

3∑
j=1

[a1,j (z, t) cos jx + a2,j (z, t) sin jx],

b = B(z, t) +

3∑
j=1

[b1,j (z, t) cos jx + b2,j (z, t) sin jx],

(3.22)

where the coefficients a1,j , a2,j , b1,j and b2,j can be determined in terms of A and B

by introducing the projection into the governing equations with the time derivatives
neglected. Substitution of the projection into the horizontal averages of the governing
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equations then provides the evolution equations for A and B . A mammoth amount
of algebra, greatly assisted by MAPLE, eventually yields the system,

At = Re−1

[
1 − Re2(1 − σG)

2(1 + G)3

]
Azz +

σRe3

2(1 + G)4
[2(1 − σG)AzzBz + (1 + σ )(AzBz)z]

− 3Re

2(1 + G)4

[
1 − σG +

σ 2Re2G(σG − 8σ − 3)

24(G + 16)(G + 1)

]
Azzzz

− 3σ 2Re5

2(1 + G)5
(2 − σG + σ )B2

z Azz − 2σ 2Re5

(1 + G)5
(1 + σ )AzBzBzz

+
Re3

6(1 + G)5
[2 − 6σG + σ 2G2(1 − σ ) − σ 2G(3σ + 5)]

(
A3

z

)
z
, (3.23)

Bt = Pe−1

[
1 − σ 2Re2(G − 1)

2(1 + G)3

]
Bzz +

Re

2(1 + G)4
[
G(2Gσ − σ 2 − 1)A2

z

+ σ 2Re2(G − 2)B2
z

]
z

− σRe

2(1 + G)4

[
5G − 1 +

σRe2(9σG − 8σ + 6G − σG2)

8(G + 16)(G + 1)

]
Bzzzz

+
σ 3Re5(3 − G)

2(1 + G)5
(
B3

z

)
z
+

σRe3

2(1 + G)5
[(3G − 1)(σ 2 + 1) + 4σG(1 − G)]

(
A2

zBz

)
z
.

(3.24)

This system displays all the symmetries of the original equations and reduces to
the asymptotic models above in suitable limits of the parameters. However, it is
not necessary to restrict the parameter settings to those values. Moreover, the
system captures the dynamics of the situation in which both the viscous and
conductive instabilities become unstable at the same time, taking the same form
as equations derivable by asymptotic means. Hence, (3.23)–(3.24) provide a more
compact description of the dynamics, and we solve this system numerically to gain
further insight into the nonlinear behaviour. Note that the growth of A stimulates B ,
but B evolves on its own if A(z, 0) = 0.

We illustrate the weakly nonlinear dynamics captured by the model in figures 4–6.
Figure 4 shows a computation in which the conductive instability arises, but there
is no viscous instability. In this case, A decays to zero, and BZ forms a sequence of
alternating layers (five layers with positive and five with negative gradient appear
initially, creating the pattern of stripes in the figure). As time proceeds, the interfaces
bordering the layers drift under mutual interaction. At various instants, interfaces
approach one another and collide, thereby removing one of the layers, and widening
its neighbours. As a result of this process, the characteristic lengthscale of the pattern
gradually increases with time; this is the coarsening dynamics captured by Cahn–
Hilliard (to which the system reduces when A → 0). At the end of the simulation, only
four interfaces remain (two pairs of layers). Another collision occurs at later times
(not shown) to coarsen the pattern to its ultimate final state, a pattern with the longest
spatial scale. In other words, the pure conductive mode exhibits a completed inverse
cascade. Associated with this cascade are rearrangements of the stratification that
take the form of a staircase in the full buoyancy distribution. Also, even though the
horizontal average of the velocity field decays, the motions driven by the conductive
mode do not. The Fourier-series form of the solution suggests slowly evolving cellular
patterns in the velocity field, as observed in the computations described in the next
section.
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Figure 4. Conductive instability in a domain of size 100. (a) A greyscale of Bz on the (t2, z)-
plane. (b) The time history of the peak-to-peak amplitudes of A and B . (c) The evolving,
total buoyancy field, βz + b, as a sequence of snapshots successively offset to the right. The
parameter values: Re = 6, G = 2 and σ = 2. In this computation, the sign of the coefficient of
the term Azzzz in (3.23) has been reversed to ensure that the system remains well-posed. The
significance of positive sign of this coefficient is that short waves are predicted to be un-
stable (an ultra-violet catastrophe), which is unphysical and probably an artifact of the
long-wave expansion. Although the switch of sign is a little arbitrary, it has the same effect as
including a regularizing term with higher derivatives provided there are no instabilities with
short wavelengths.

Figure 5 displays the emergence of the (supercritical) viscous instability in the
absence of a conductive one. When the viscous instability first enters the nonlinear
regime, a pattern with five light and dark stripes appears in Az. These stripes reflect
an alternating sequence of horizontally directed jets superposed on the underlying
vertical flow (which corresponds to a characteristic meandering motion that is visible
in the numerical solutions of the next section). Sharp negative buoyancy gradients
build up in the shear layers bordering the jets, giving a characteristic vertical scale to
b which is twice that of the velocity field. However, the effect on the total buoyancy
field is less pronounced and little forms by way of a staircase. Note that the interface
collapses in figure 5 generate a response throughout the entire pattern (the overall
shading of the layers and interfaces appears to abruptly change at the collisions,
especially for B(z, t)), in contrast to the relatively local effects seen in figure 4. This
reflects a more non-local nature of the dynamics which is also expected from the
non-local term in (3.21). Moreover, the pattern does not coarsen further at later times,
unlike in figure 4, and the state ending figure 5 appears to be the final one. Thus
coarsening is arrested, as found in our earlier paper for much weaker stratification.
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Figure 5. Viscous instability in a domain of size 100: (a, b) greyscales of Az and Bz on the
(t, z)-plane; (c) time series of the peak-to-peak amplitudes of A and B; (d) a greyscale of B
on the (t, z)-plane; and (e) a sequence of snapshots of total buoyancy, βz + b. The parameter
values: Re =3, G = 1/4 and σ = 1/2.

Figure 6 shows a computation in which both modes are unstable and a steady, non-
coarsening pattern emerges. This picture illustrates another feature of the dynamics,
namely that when the two modes compete, the viscous mode dominates and suppresses
the conductive mode. In order to emphasize this feature of the dynamics in the
computation, the growth rate of the conductive mode was artificially increased and
the initial condition seeded with the unstable conductive mode in order to promote
that instability over the viscous mode, at least initially. After a period of time,
however, the viscous mode overtakes the conductive mode and establishes a steady
pattern that shows no coarsening.

We close this section by cautioning that the long-wave model in (3.23)–(3.24) is not
always well-posed: for certain parameter choices, the hyper-diffusion terms, Azzzz and
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Figure 6. Double instability in a domain of size 20. (a, b) Greyscales of Az and Bz on the
(t, z)-plane, and (c) the peak-to-peak amplitudes of A and B . The parameter values: Re = 75,
G = 2.5 and σ = 0.11. In order to promote artificially the conductive mode over the viscous
mode, the growth rate of the conductive instability has been increased unphysically by a factor
of 20, and the initial condition seeded mainly with the unstable linear conductive mode.

Bzzzz, turn out to have positive coefficients. (In figure 4, for example, even though the
A-mode decayed away, we artificially reversed the sign of the Azzzz term to ensure the
system remained well-posed.) Moreover, the coefficients of the nonlinear terms, (Bz)

3

and (Az)
3, are not always positive and the system seems able to pass abruptly into a

phase where gradients are continually sharpened and the computation breaks down.
Of course, since the original system is unlikely to be prone to the same problems,
the fault must lie in the Galerkin truncation. We avoid any such problems below by
solving the full governing equations numerically.

4. Direct numerical simulations
To compare the results of the previous section with numerical solutions we select

three sets of representative parameter values:

(i) Conductive: Re = 6, G = 2, σ = 2 (Pe = 12, β = 1/36, θ = 0),

(ii) Viscous: Re = 3, G = 1/4, σ = 1/2 (Pe = 3, β = 1/18, θ = 0),

(iii) Combination: Re = 17, G = 1.705, σ = 1/2 (Pe = 8.5, β = 1/85, θ = 0),
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Figure 7. Conductive instability in the domain [2π, 32π]. Snapshots of (a) ψ(x, z, t) and
(b) b(x, z, t) as greyscales on the (x, z)-plane. The parameter values: Re = 6, G = 2 and σ = 2.
The times of the snapshots are 5000, 15000 and 26000 (left to right). (c) The evolution of the
total, horizontally averaged buoyancy field, βz + B(z, t).

with a domain of horizontal and vertical lengths, Lx = 2nπ and Lz = 32π. We explore
cases with n= 1 or 2: if n=1, there is a single pair of opposed vertical jets in the
domain; for n= 2, there are two pairs.

Figure 7 shows the evolution of case (i), with a single pair of jets. The instability
creates a cellular velocity pattern that is also characterized by a ‘blobby’ field of
buoyancy anomaly. There is weak mean (x-averaged) horizontal flow, but strong re-
arrangement of the mean (x-averaged) buoyancy into a staircase, both of which are
typical of the conductive instability. The pattern initially forms an array of four
cellular structures, but these coarsen to two, as expected from the underlying Cahn–
Hilliard dynamics.

Figure 8 shows the evolution of a single jet pair in case (ii). The instability initiates
a distinctive meander of the jet and eddies emerge within parts of the meander;
this pattern is much like that arising in weakly stratified Kolmogorov flow consider
in our earlier paper (although there the underlying jets were horizontally directed).
The meandering reflects stronger mean horizontal flow, and the buoyancy field shows
twice the vertical scale of the horizontal field. The eddying meanders coarsen from
six to four, with large transients produced in the buoyancy field as a result of the



Stratified Kolmogorov flow. Part 2 37

0 6.3

101

z

x

(a)

(d)(c)

(b)

30

20

10

0

30

20

10

0
1 2 3 1 2 3

(×107) (×107)
Time2 Time2

z 
(π

)

Figure 8. Viscous instability in the domain [2π, 32π]. Snapshots of (a) ψ(x, z, t) and
(b) b(x, z, t) as greyscales on the (x, z)-plane. The horizontal averages of (c) ψ and (d) b on the
(t, z)-plane. The parameter values: Re = 3, G = 1/4 and σ =1/2. The times of the snapshots
are 1.5 × 103, 4.6 × 103, and 6 × 103, respectively (from left to right).

mergers. At four meanders, coarsening appears to halt. Again, these features reflect
the weakly nonlinear dynamics predicted by the long-wave theory.

The single pair of jets for case (iii) is shown in figure 9. The forming patterns bear
much in common with those created by the viscous instability, although there is little
sign of coarsening in the meanders. As expected the conductive mode is suppressed.

Results for n=2 are shown in figures 10 and 11. The main surprise for case (i) is
that the layering pattern of the conductive mode becomes replaced by a pattern with
the meandering and eddying character of the viscous mode. The pathway to this final
state proceeds in two stages. First, a pattern emerges with the blobby and cellular
features typical of the conductive mode, but it is unsteady, irregular and contains
a significant contribution from a subharmonic, x-wavenumber-one disturbance. This
initial phase is interrupted by the growth of what appears to be a secondary instability
that spawns the meandering and eddying jet pattern. Case (ii) shows no surprises,
being a periodically repeated version of the n= 1 single paired jets, and is not there-
fore displayed. Meandering and eddying again predominate in the case (iii) compu-
tation, but now, somewhat surprisingly, significant coarsening takes place. This reduces
the initial number of meanders from seven down to three. From the trend of the
computation, we suspect that a further coarsening to two would take place around
t = 2 × 104 if we were to continue the computation. The coarsening is now mediated
by an oscillatory interaction involving the horizontal motion of buoyancy anomalies
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Figure 9. Double instability in the domain [2π, 32π]. The final distribution (at t = 1219) of
(a) ψ(x, z, t) and (b) b (x, z, t) as greyscales on the (x, z)-plane. The horizontal averages of (c) ψ
and (d) b on the (t, z)-plane. The parameter values: Re = 17, G = 1.705 and σ = 0.5. The times
of the snapshots are 1.04 × 103, 1.12 × 103, and 1.22 × 103, respectively (from left to right).

and pulsations of the eddies. The plots of horizontally averaged streamfunction and
buoyancy anomaly nicely bring out this feature, and also illustrate how strong layer
migrations occur in this computation.

Finally, we remark that we have also run some further computations at either
higher Reynolds numbers, or with inclined jets. At higher Reynolds number, little
visibly remains of the structured patterns seen just above onset, which are replaced by
complicated time-dependent motions, at least for small G. Computations for larger
G and Reynolds number showed steady states with a strong viscous mode and weak
layering, even under conditions where the viscous mode was expected to be relatively
strongly damped. We attribute this dynamics to the viscous mode becoming subcritical
and growing nonlinearly. Simulations with inclined jets reveal a different dynamics
still, involving wavy, time-dependent patterns, but we end the exploration here.

5. Concluding remarks
We have explored instability of forced stratified shear flow. The picture is largely

one of two modes of instability that develop over long vertical scales. The first
is a ‘viscous’ instability which is related to the classical instability of Kolmogorov
flow. The introduction of stratification can suppress this instability, but can also
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Figure 10. Conductivity instability with two paired jets. (a–d) As figure 9. The times of the
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make it subcritical. The second instability is a ‘conductive one’ which operates by
creating a large-scale negative thermal diffusion. This instability arises with stronger
stratification and creates prominent staircases in the buoyancy field. The steps of
the staircase have their own nonlinear dynamics, and often show ‘coarsening’ – the
merger of steps as the dividing interfaces collide, with the subsequent lengthening
of the scale of the overall pattern. The viscous instability appears able to dominate
and suppress the conductive mode should both operate, and creates little by way of
layering in the density field. Moreover, there is a tendency for that mode to become
subcritical and dominate by growing nonlinearly, even under conditions where it is
linearly stable. Thus, although it seems possible that the conductive instability is the
laminar precursor of the fluid phenomenon that generates turbulent staircases, it is
essential to remove the viscous mode. In our previous investigation (Balmforth &
Young 2002), the configuration and parameter range are such that only viscous
instability is present, and thus almost no evidence of layering is observed in that case.

Instabilities catalyzed by viscosity or thermal conduction are known in a variety
of other contexts, notably differentially rotating annular columns (Yih 1961) and
stellar interiors (Goldreich & Schubert 1967), and baroclinic vortices (McIntyre
1970). One is tempted to rationalize the current instabilities as analogies of those
examples. However, there are differences in the current theory. For example, a general
conclusion reached in these other problems is that conductive instability is typical of
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Figure 11. Combined instability with two paired jets. (a–d) As figure 9. The times of the
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low Prandtl number (σ < 1), and viscous instability of high Prandtl number (σ > 1),
which is not found here.
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Appendix. Formulae for weakly nonlinear theory
A.1. Weak conductive instability

The order ε3 solution is

ψ3 =
13Re

72

(
G1

3
+ Re

√
6BZ

)
BZZ sin 2x +

Re

5976
(10

√
6 + 3Re)BZZZ cos 3x

−
[
1

3

(
G1

3
+

√
6ReBz

)3

+
Re

72
(Re + 30

√
6)BZZZ +

√
6

9
κ2

(
G1

3
+

√
6ReBZ

)]
cos x,

b3 =
13

9

(
G1

3
+ Re

√
6BZ

)
BZZ cos 2x − 1

2988
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√
6 − Re)BZZZ sin 3x
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+

√
3
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3Re
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3
+

√
6ReBZ

)3

−
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6

9Re
κ2G1 − 2κ2BZ
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sin x.
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A.2. Weak viscous instability

At order ε2, we find

ψ2xxxx + Recb2x = Rec(ψ0xψ1xxZ + ψ1xψ0xxZ − ψ1Zψ0xxx − ψ0Zψ1xxx) − 2ψ0xxZZ, (A 1)

Gψ2x − Recb2xx = σRe2
c(b1xψ0Z + b0xψ1Z − b0Zψ1x − b1Zψ0x) + Recb0ZZ, (A 2)

which gives

ψ2 =

[
2σG − 1 + σ 2G

1 + G
A2

Z − σB1Z

]
Re2

c cos x

(G + 1)2
− σ 2GRe2

cAZZ cos 2x

4(1 + G)2(16 + G)
, (A 3)

b2 =

[
σB1Z − GRec(1 − σG + σ + σ 2)

(G + 1)
A2

Z

]
sin x

(1 + G)2
+

2σ 2RecGAZZ sin 2x

(1 + G)2(G + 16)
. (A 4)

At order ε3:

ψ3 =
Q1Rec sin x

2(1 + G)4
+

[
10G(G + 4)(σ + 1)

(1 + G)(16 + G)
AZAZZ − B1ZZ

]
σ 2Re3

c sin 2x

8(G + 16)(1 + G)2

− σ 2GRe3
c(9 + σG + 8σ )

48(81 + G)(G + 16)(1 + G)3
AZZZ sin 3x, (A 5)

b3 =
Q2 cos x

(1 + G)4
−

{
G[G2 − 3G − 64 − 20(4 + σ )]

2(G + 16)(1 + G)
AZAZZ + B1ZZ

}
σ 2Re2

c cos 2x

(G + 16)(1 + G)2

+
σ 2GRe2(G − 9σG − 72σ )

8(81 + G)(G + 16)(1 + G)3
AZZZ cos 3x (A 6)

with

Q1 = σRe2
c(1+G)(2−σG+σ )AZB1ZZ +

[
Gσ 2(8σ −σG+3)

8(16 + G)
−3(1+G)(1−σG)

]
AZZZ

+ Re2
c(σ

2G2 − σ 3G − 2σ 2G − 3σG + 1)A3
Z (A 7)

Q2 = σRe2
c(1 − G2)(1 + σ )AZB1Z − σ 2Re2

cG(1 + σ )(1 − 2σG + σ 2)A3
Z

+

[
(1 + G)(4 − 2σG + G + σ ) − σ 2Re2

c(σG − 8σ + 3G)

8(G + 16)

]
GAZZZ (A 8)
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