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SUMMARY

Many physical and biological systems involve inextensible fibers immersed in a fluid; examples include cilia,
polymer suspensions, and actin filament transport. In such systems, the dynamics of the immersed fibers may
play a significant role in the observed macroscale fluid dynamics. In this study, we simulate the dynamics of
an approximately inextensible semi-flexible fiber immersed in a two-dimensional cellular background flow.
The system is modeled as an immersed boundary problem with the fluid dynamics described using the Stokes
equations. The motion of the immersed fiber is computed by means of the method of regularized Stokeslets,
which allows one to calculate fluid velocity, pressure, and stress in the Stokes fluid flow regime because of a
collection of regularized point forces without computing fluid velocities on an underlying grid. Simulation
results show that, for some parameter values, the fiber may buckle when approaching a stagnation point.
These results provide insight into the stretch—coil transition and macroscale random walk behavior that have
been reported in mathematical and experimental literature. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Elastic, semi-flexible slender bodies are responsible for a great variety of biological functions, which
are carried out by the hydrodynamics of these bodies immersed in viscous fluids. One example of
such slender bodies is the cilium, which consists of a bundle of bio-polymers known as micro-
tubules. The dynamics of multiple pulmonary cilia assist in transporting mucus in the lung. Another
type of cilia, primary cilia, extend from the membrane of a cell or a unicellular organism. Some of
these cilia are immotile and act as sensors, whereas others are capable of rhythmical motion, acting
in unison with other surface structures to bring about the movement of the cell of the surrounding
medium. The motion of primary cilia has been linked to the breaking of left-right asymmetry in
developing embryos [1-5]. Another example is the motion of a flagellum that is driven by motor
proteins. This motion is responsible for the locomotion of bacteria in its surrounding fluid [6-8].
The hydrodynamics of a single bio-polymer, such as DNA, actin filaments, or microtubules, have
also been widely investigated. DNA molecules are flexible filaments, and a great deal of effort
has been devoted to the folding and unfolding of DNA strands in planar shear flow or extensional
flow. Actins and microtubules are semi-flexible slender filaments. When driven by molecular motors
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in the motility assays, microtubules have been utilized for transporting nano-cargo in microflu-
idic channels [9, 10]. Many bio-fluidic and nano-fluidic systems involve conversion of chemical
energy to mechanical work for transport at small scales. For example, in the in vitro motility assays,
microtubules (or actins) are driven by kinesins (or myosins), which convert the chemical energy
of adenosine triphosphate hydrolysis into mechanical work [11-13]. The principal mechanism for
transport of actins or microtubules in the motility assays has been utilized in emerging nanotech-
nology for directed transport of molecules and nanometer-sized cargo in cellular-sized synthetic
devices [14—19]. Results from these studies are essential for direct molecular assembling, sorting,
and sensing [20-22]. By integrating motor proteins into synthetic devices, it is possible to assemble
a shuttle system where nano-scale cargo is transported between user-defined locations for specific
cargo delivery. Electric fields [23] and hydrodynamic flows [24] have been utilized to direct the
transport of shuttles in the assays.

Coarse-grained bead-rod and bead-spring models have been widely used for Monte-Carlo sim-
ulations of bio-polymers [25-27]. Whereas it is easy to implement the coarse-grained models for
qualitative comparison with experiments, a continuum formulation (such as a slender-body formu-
lation [28,29]) allows analysis for elucidating the underlying physics. However, the far-field fluid
flow is not accurately described by the slender-body equations; also, the slender-body equations
become invalid when elastic structures are in close vicinity of each other. The immersed boundary
method may be used to simulate fluid—structure interaction [30], but the computational cost required
to accurately capture the elastic dynamics of slender filaments immersed in a viscous fluid may be
high.

In this paper, we will utilize the method of regularized Stokeslets [31, 32] to model a semi-
flexible, approximately inextensible fiber immersed in two-dimensional cellular Stokes flow. This
method provides a way to calculate fluid flow properties due to the dynamic forces generated by an
immersed structure without requiring an underlying fluid grid. Additionally, the method of regular-
ized Stokeslets can be used to calculate the stress and pressure at any point in the fluid. Regularized
Stokeslets have been used to model a variety of biological contexts, including cilia, bacterial flag-
ellar bundling and swimming, arthropod filiform hairs, microorganism locomotion, and endothelial
glycocalyx structures [32-37].

The remainder of this paper is organized as follows. Section 2 introduces the physical scenario
of interest in this study. Section 3 explores aspects of our numerical implementation, including an
introduction to the method of regularized Stokeslets and a discussion of our semi-implicit time-
stepping technique. Numerical results are presented in Sections 4 and 5, which show qualitative
agreement with experimental and modeling literature [29,38] and provide new information.

2. MODEL AND PHYSICAL SETUP

We describe a mathematical model that simulates the physical experiments by Wandersman
et al. [38], in which a slender inextensible semi-flexible fiber is immersed in a shallow fluid. The
depth of the fluid is such that the flow is considered to be two dimensional. This cellular flow has
a lattice of stagnation points, each consisting of a stable and an unstable manifold. The length of
the fiber in the experiments is 12 mm. With that length scale, the flow is characterized by a low
Reynolds number, indicating that viscous forces dominate inertial forces. Thus, we describe the
fluid flow using the quasi-steady Stokes equations in two dimensions in free space, given by

pAu=Vp—F, (D

V-u=0, 2

where p is the dynamic viscosity of the fluid, u represents the fluid velocity, p represents pressure,
and F is an external force exerted on the fluid, which will be discussed further in the succeeding
paragraphs. In this regime, the time-varying fluid flow can be calculated at each time instant from
only the current configuration (a consequence of the low Reynolds approximation that neglects
inertial terms in the Navier—Stokes equations).
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The fiber, assumed to have length L, is immersed in the following background flow velocity:

sin () cos (%)
Uy (X) = ug , (3)
—cos (L&) sin (%)
where u¢ scales the maximum flow velocity and W dictates the width of a cell. Figure 1 exhibits the
L

background flow velocity, depicted for four cells. Let @ = 37 be the ratio between the fiber length
and cell width. Unless otherwise noted, « = 0.4 in this study.

To model an approximately inextensible, semi-flexible fiber, we assume the fiber is elastic so that
when it is stretched or compressed, it exerts an elastic force, f., on the fluid. Also, when the fiber
is bent, it exerts a bending force, fy,, on the fluid. Let I" be the fiber; s(¢), the arc length along I" at
time ¢; X(s), the position of a point on the fiber; and &, the arc length of the fiber in its equilibrium
position. Note that for a truly inextensible fiber, s(¢) = & for all . However, our model fiber is
allowed a small degree of extension or compression (see succeeding discussions); thus, s(¢) does
not necessarily equal €. As such, the elastic force is given by

d
f(s) = 5. (T()z(5)), “)

where T is the tension in the fiber and 7 is the unit tangent vector to the fiber, each respectively
given by

d
T(s):TO('g'—l), )
d
o) = ©

The tension coefficient, Ty, is a material property of the fiber. To approximate an inextensible fiber,
Ty will be large. The bending force is given by

fo = cvXissss (7
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Figure 1. Two-dimensional cellular background flow given in Equation (3). Note that only four cells are

represented in the figure, but an infinite number of cells are assumed in the model. The cell pattern is

repeated periodically in both the x and y directions. There are no physical boundaries in this fluid, except
the immersed structure.
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with X = 0 and X = 0 enforced at the endpoints of the fiber to ensure the fiber is force free.
Here, ¢y is the bending coefficient.

The velocity at any point in the fluid can then be decomposed as follows with up, U, and u,
representing the background velocity from Equation (3), the velocity due to elastic forces, and the
velocity due to bending forces, respectively,

u(X) = g (x) + ue(x) + up(x). ®)

In two dimensions, let u(x) = (11 (x), u2(x)). Incorporating the aforementioned elastic and bending
forces, the ith component of the velocity at a fluid location x is

2
i (X) = g () + /F 38 (X)) [ o (X()) + foj (X(5))] ds, ©
j=1

where i = 1, 2. Here, S is the free-space Green’s function, or Stokeslet,

(i — Xi)(x; —Xj):|
Ix —X|? '

~ 1
S,‘j(X, X) = —41”“ |:—8ij In|x —X]| +

which will be discussed further in Section 3.1.

(10)

3. NUMERICAL METHOD

The velocity expression in Equation (9) has a singularity when the velocity is calculated at the loca-
tion of the point force, due to the Stokeslet given in Equation (10). This is undesirable numerically
because quadrature error will be large when evaluating the boundary integral near the immersed
fiber. As such, we will work with a modified version of the Stokeslet that results in computing the
free-space Green’s function due to a regularized point force. By using the method of regularized
Stokeslets, we remove the singular nature from the velocity expression. The details of the method
of regularized Stokeslets are summarized in Section 3.1.

3.1. Method of regularized Stokeslets

The method of regularized Stokeslets, originally developed by Cortez [31,32], is a grid-free numer-
ical method that calculates the fluid velocity in Stokes flow due to a collection of regularized forces.
In traditional singularity theory, a Stokeslet is the free-space Green’s function resulting from a sin-
gular force that is represented by a Dirac delta distribution, as shown in Equation (10) (see [39]
for more information regarding Stokeslets and related singularities). In the method of regularized
Stokeslets, cutoff functions are introduced in lieu of Dirac deltas to regularize Stokeslets. This reg-
ularization removes the singular nature from the velocity field; hence, the velocity and other fluid
quantities of interest, such as stress and pressure, can be evaluated anywhere in the fluid, including
at the location of a regularized Stokeslet. After regularizing a singular force, there exists a linear
relationship between regularized Stokeslet forces and the velocity anywhere in the fluid.

The details of the method of regularized Stokeslets in two dimensions are summarized in the
succeeding discussions [31]. Instead of representing a point force with a delta function, as is the
case in deriving a Stokeslet, we regularize the force using a radially symmetric cutoff function, ¢..
We assume that the cutoff function is a smooth approximation to the delta function that satisfies the
following conditions:

/¢€(X)dX=1, (11)
lim ¢¢ (x) = 8(x), (12)
€—>0
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where € is a spreading parameter that controls the extent of the distribution. Following [31], we use
the cutoff function

3e3
2Y(r2 4 €2)5/2°
where r = |x — Xg|, with the regularized point force located at Xg.

Now consider solving the Stokes equations in two dimensions with a regularized forcing term at
Xp, with X = x — X

Ge(r) = (13)

pAu(x) = Vp(x) — fpe (%), (14)

V-u(x) =0. (15)

One can represent a solution to Equations (14) and (15) in two dimensions with a regularized
Stokeslet constructed from the cutoff function ¢¢ [31]

SPe(x.x0) = 8 Fi(r.€) + i %, Fa(r. ), (16)

where i = 1,2 and j = 1,2 and

Fl(r,e)=—1n< 7’2+€2+E)+6(\/7’2+€2+26) (\/7‘2+62+€) V2 +e2, (17)

Vr24e? 4 2e
; .
(VT +e) Vit e

Notice that in the limit as € — 0, we recover the expression for the singular Stokeslet in two
dimensions

Fr(r,e) = (18)

A

)Eixj
2

eh—IR) S:ﬁe =—6;;Inr + =S, (19)

r

where S;; = 4WL§,-,- from Equation (10) [31,39].
The velocity at a fluid location x due to a regularized point force located at xo can be represented
as

|2
uf’¢ (x) = v Z:l Sj; (x,Xo) fj. (20)

Additionally, one can find the pressure at a fluid location x due to a regularized point force at xq
as [31]

1
p®=5&?ﬁ, Q1)

where

. Xj <r2+262+€«/}‘2+62)

P : (22)
J (m+ €)(r? +€2)3/2
From the velocity and pressure expressions, one can also derive the stress
8ui auj
0ij =—pdij + 1 + — (23)
ij E)xi
_ 7P r.
=T /i (24)
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where

Tt%] =8ik)ACjF3+(8ij)ACk+5jk)ACi)F4+4)ACi)ACj)ACkF5, (25)
22207+ )2+ o) 26)

3= (r2 + €2)3/2((r2 + e2)1/2 4 ¢)2°
Fy = i 27)

T2+ )12 + )12 4 )2
1

Fs ‘ (28)

= (,,2 + 62)3/2((,,2 + 62)1/26) + (rz + 62)((,,2 + 62)1/2 + 6)3'

This stress calculation is an advantage of using the method of regularized Stokeslets to model the
immersed fiber scenario of interest in this paper. The local interaction of the buckling fiber with the
surrounding fluid is responsible for interesting macroscale behavior, so investigating the stress in
this configuration will be beneficial.

With the aforementioned regularized Stokeslet formulation, by knowing the forces exerted on
the fluid, we can compute the fluid velocity, pressure, and stress at any point in the infinite two-
dimensional fluid domain. The position of the fiber X(s) is represented by N discrete points initially
equally spaced with respect to s. Notationally, let X represent the location of the kth regular-
ized Stokeslet on the fiber, where k = 1,..., N. When discretizing the regularized version of
Equation (9), the velocity can be expressed as

N 2
Ui (X) = ungi (%) + D Y qeSPe . Xp0) [fej Xi) + Sy (X)) (29)

k=1j=1

where gy is a quadrature weight. For the work discussed here, we use the trapezoid rule for integral
approximations. The elastic and bending forces discussed in Section 2 can be expressed as a linear
function of fiber position, Xj. By incorporating this formulation into Equation (29), we obtain the
following:

N 2 2
ui(X) =upgi () + Y YN Qi SPE (%, Xp) (Aeji + Ap ji) Xiea. (30)
k=1j=11=1

where A. and A}, represent the discrete operators associated with the elastic and bending forces,
respectively. For the results shown in this paper, A, arises from a discretization using a second-order
centered difference method, and Ay, is associated with a second-order, non-uniform, five-point finite
difference stencil. Recall, in this notation, that X represents all discretized fiber locations (hence,
all regularized Stokeslets locations), and x represents all locations where we want to calculate the
fluid velocity. Thus, x could equal just X or it could include fluid locations in addition to those con-
tained in X. The formulation in Equation (30) can be adapted to deal with both of these situations,
regardless of whether the fluid velocity is desired only at locations that coincide with regularized
Stokeslets or elsewhere.

3.2. Semi-implicit time stepping

With Equation (30) discretized in space, we can advance the fiber position as well as the fluid
tracer locations in time using a time-stepping algorithm described in the succeeding paragraphs.
The velocity contributions due to the fiber’s position are stiff contributions to the ODE system.
Specifically, the bending force is calculated with a high-order derivative, and the inextensibility
condition is implemented with a collection of stiff springs. Thus, using an explicit method requires
a prohibitively small time step. However, using a fully implicit time-stepping method involves solv-
ing a nonlinear system of equations, which can also be undesirable. To balance these concerns, we
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implement a semi-implicit treatment of the velocity decomposition in Equation (30). To condense
notation, we consider Equation (30) in vector form, rather than component form

u(x) = upg(x) + M(x, X)X, (31)

where u(x) and uy, (x) denote fluid velocities at the locations x. The matrix M is given by

N
Mx,X) =Y S (%, Xp) (Ae + Ab). (32)
k=1

We will consider two cases: when the fluid velocity is calculated at a regularized Stokeslet location
(x = X) and when the velocity is calculated away from a regularized Stokeslet location (x # X). Let
us consider the first case, where we want to calculate u(X) at time index n. We replace the velocity
on the left-hand side of Equation (31) with a forward difference to obtain

Xn-‘rl X"
At

where superscripts denote the time index. Note from Equation (33) that the background velocity and
the regularized Stokeslets are computed with the current position of the fiber, X", but the regularized
Stokeslets are applied to forces generated by the new fiber position, X1, A benefit of using this
time-stepping scheme is that the solution can be found by solving a linear system

= up (X") + M(X", X")X" (33)

X" = (1 — AtM (X", X)) (X" + Atupg(X7)) . (34)

Thus, Equation (34) is used to update the position of the fiber at each time step while maintaining a
balance between avoiding prohibitively small time steps and solution of nonlinear systems.

We also have to consider updating the position of tracer particles that do not coincide with the
regularized Stokeslet locations by discretizing u(x) in time. However, now that we know the updated
fiber position, X"+, we can explicitly solve Equation (31) for the updated fluid tracer position

Xn+1 = Xn + At [ubg(Xn) + M(Xn,Xn)Xn+l] . (35)

Using Equations (34) and (35), we can now update the position of the fluid particle at any location,
regardless of whether it coincides with a regularized Stokeslet location.

4. NUMERICAL RESULTS

A goal of modeling approximately inextensible, semi-flexible fibers in cellular Stokes flow with
regularized Stokeslets is to capture the qualitative behavior of a filament that is observed in the
experiments of Wandersman et al. [38] and reported in the model of Young and Shelley [29].
Wandersman et al. observed that a fairly flexible fiber bends as it navigates through the stagnation
points. However, when the bending rigidity of the fiber is increased, the fiber pivots at the stagnation
points instead of bending. Some of the results in [29] show buckling behavior for a semi-flexible
fiber as well.

To compare the regularized Stokeslets model to the results of Wandersman et al., we use the fol-
lowing parameters that are used in their experiments. The fiber has length of Ly = 12 mm and radius
r = 90 pm. The Young’s modulus, Y, is allowed to take on values ranging from 75 to 180 kPa. We
will use both extremes of this range to model two fibers of different rigidity. The cellular background
flow has a cell size of W = 3 cm, which makes the ratio of fiber length to cell width o = % =0.4
in this case. The viscosity of the fluid is & = 40 mPa s, and the maximum speed is vy = 17 mm/s,
which creates a maximum extension rate near a stagnation point of y =1.78 s~!. By choosing
Y = 75 kPa, the fiber is more semi-flexible than when Y = 180 kPa. The results shown in this
section are produced with a dimensionless model. Incorporating the aforementioned physical param-

. . . . . L . S
eters results in the following model parameters: effective viscosity ' = %, bending rigidity
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4y4 . . ; . . . .
B = 3”4—Y, tension coefficient Ty = 'Z—;’, and bending coefficient ¢, = 1. The fiber is discretized

using N = 100 regularized Stokeslets v&?ith spreading parameter € = 0.001. The time step used is
0.001 in dimensionless time units (when time and distance are nondimensionalized using y = 1.78
s~! and Lo = 12 mm, respectively).

The results for both of the semi-flexible (Y = 75 kPa) and stiff (Y = 180 kPa) cases are shown
in Figures 2 and 3, respectively. In these figures, the fiber begins in a vertical position slightly
offset to the right of the stable manifold. The initial position of the bottom end of the fiber is
(3 x 1073,3 x 107°%) cm when a stagnation point coincides with the origin, and the cell width is
W = 3 cm. The physical parameters and initial conditions are identical for these two cases, with
the exception of the Young’s modulus. As time passes, the fiber travels down toward the stagnation
point, hovers over it, buckles (Figure 2(c) for the semi-flexible fiber) or pivots (Figure 3(c) for the
stiff fiber), and travels away from the stagnation point on the unstable manifold. This behavior is
consistent with the experimental results shown in Figure 1 of [38].

For a slightly different choice of parameters, a semi-flexible fiber can produce the s-shaped buckle
that is discussed in Young and Shelley [29]. This fiber has bending rigidity B = 107'5 N m?2,
dimensionless effective viscosity of n’ = 10*, tension coefficient Tp = 9.9 x 107, and bending
coefficient ¢, = 99. The fiber starts vertically, parallel to the stable manifold, with its lowest point
at (3 x 1077,0) cm. The fiber has length of Ly = 1 cm and the cell width is W = 3 cm. In this
case, the dimensionless time is scaled by y = 1 s™!. The time step is Az = 0.001 s, and we use
N = 100 regularized Stokeslets with ¢ = 0.001. The fiber in Figure 4 demonstrates the type of
buckling behavior documented in Figure 1(a) of [29].

Although each panel in Figures 2—4 shows only one snapshot of the interaction of the fiber with
a stagnation point, when viewed over a longer period, the fiber migrates from cell to cell. As it
approaches a stagnation point, it chooses to bend/buckle/pivot, samples its local fluid velocity, and
then chooses a direction to travel away from the original stagnation point. Figure 5 shows the center
of mass of the fiber depicted in Figure 4 over a period of 400 s. This motion is qualitatively similar
to that displayed in Figure 1(a) of [29].
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Figure 2. Snapshots of a semi-flexible fiber near a stagnation point obtained for ¥ = 75 kPa. The fiber
approaches the stagnation point vertically, hovers, buckles, and exits to the left. The given time values are
dimensionless (nondimensionalized by y = 1.78 s~ 1).
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Figure 3. Snapshots of a stiff fiber near a stagnation point obtained for ¥ = 180 kPa. The fiber approaches
the stagnation point vertically, hovers, pivots, and exits to the right. The given time values are dimensionless
(nondimensionalized by y = 1.78 s~ 1).
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Figure 4. Snapshots of another semi-flexible fiber near a stagnation point. The fiber approaches the stag-
nation point vertically, hovers, buckles, and exits to the left. The given time values are dimensionless

(nondimensionalized by y = 1 s71).
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Figure 5. Trajectory of the center of mass of the fiber depicted in Figure 4 over a period of 400 s.

Beyond qualitative benchmarking with the experimental and modeling results in the literature,
one advantage to using the method of regularized Stokeslets to model an immersed fiber is the abil-
ity to calculate the stress exerted by the fiber on the fluid with Equation (23). The dynamics of the
elastic fiber around the stagnation point in the extensional flow is of specific interest.

In experiments of microfluidic extensional cross-flow with polymer molecules, it is observed that
the polymers are strongly stretched near the stagnation point, and the fluid flow can exhibit non-
linear behavior such as bistability [27,40-42]. At low Weissenberg numbers, the ratio of filament
relaxation time to the characteristic fluid flow time scale, the flow remains steady but becomes
asymmetrically deformed. At high Weissenberg numbers, the velocity field is unsteady and pro-
duces mixing. Numerical studies of this experiment have found instabilities for large Weissenberg
numbers, even though the wide-band spectra in experiments have not been observed in numerical
studies [43,44].

Analytical studies of Stokesian non-Newtonian fluids show that the spatial structures of the stress
field are very sensitive to the Weissenberg number [43]. At high Weissenberg numbers, the stress
fields tend to develop nearly singular spatial variation, which is closely related to the aforemen-
tioned bistability. For the simulations shown in Figures 2 and 3, the estimated Weissenberg number
is in the approximate range 1 < Wi < 6, which is similar to those in microchannel experiments.
Therefore, it would be interesting to examine the stress tensor in more details.

Figures 6 and 7 show the components of the stress tensor for the time snapshots denoted by time
t = 4 in Figures 2(c) and 3(c), respectively. The divergence of stress is related to the forces exerted
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Figure 6. Stress tensor components for a semi-flexible fiber in the configuration shown in Figure 2(c).
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Figure 7. Stress tensor components for a stiff fiber in the configuration shown in Figure 3(c).

on the fluid from the elastic filament (e.g., see [27], [39]). One would expect the stress fields to
be different for the semi-flexible and rigid cases as the fiber deformation is significantly different
as it passes the stagnation point in the extensional flow, as shown in Figures 6 and 7. Notice that
the spatial structure of the stress field differs in these two cases. Also, the extreme stress values are
larger in all stress components for the semi-flexible case compared with the stiff case.

Figure 8 shows the temporal variation of the stress fields, with Figure 8(a, b) corresponding to the
semi-flexible and stiff fiber motion, depicted in Figures 2 and 3, respectively. Given a fixed x posi-
tion, the largest magnitude of stress component o7y is plotted versus time. Because of the fact that
the different fibers exit the stagnation points in different directions, different x values are sampled.
For the semi-flexible fiber, the x values used are 0.5, 0.75, and 1 cm, where the origin coincides with
the stagnation point and the cell width is W = 3 cm. The x values used for the stiff case are —0.5,
—0.75, and —1 cm. The curvature is also plotted as a function of time in Figure 8 for reference.

As the semi-flexible fiber buckles near the stagnation point for time 3 < ¢ < 7 in Figure 8, the
stress field first increases in amplitude and then decays as the fiber moves away from the stagnation
point. For the stiff fiber, rotation and slight filament deformation around the stagnation point lead
to an increase in the stress field for time 4 < ¢ < 7. However, the increase in stress follows the
increase in curvature that occurs for time 3 < ¢ < 5, unlike in the semi-flexible case where they
coincide. In both cases, the stress is non-zero when the fiber travels to the stagnation point and hov-
ers before deciding to buckle or pivot. The magnitude of the stress for time 0 < ¢ < 3 is larger in
the semi-flexible case rather than the stiff case, but the opposite is true for f > 3. It should be noted
that whereas the x values sampled in these plots are symmetric about the y axis, the symmetry is
not present in the stress plots in Figure 8 because of the position of the fiber relative to the fixed x
values. Although the fiber does not cross the x = —0.5-cm line, it comes much closer to it while
pivoting than the semi-flexible fiber does to x = 0.5 cm while buckling, suggesting why the stress
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Figure 8. The top plots show maximum of stress tensor component 011 versus time for three fixed x loca-

tions. The semi-flexible fiber case is shown in (a) for x = 0.5, 0.75, and 1 cm. The stiff fiber case is shown

in (b) for x = —0.5, —0.75, and —1 cm. The bottom row of plots show the maximum curvature of the fiber
versus time.

is higher in the stiff case than in the semi-flexible case, despite the curvature. Additionally, as seen
in Figures 6 and 7, the spatial structure of the stress is different for both the semi-flexible and stiff
cases, providing an explanation for why the plots of stress versus time are not identical.

To view the time evolution of stress in a different way, Figure 9 displays the stress component o1
at x = 0.5 cm as a function of y for various times. The spatial structure of the stress fields when
the fiber is bent (e.g., when ¢ = 4 in Figure 9) exhibits similar features in the analysis of Olroyd-B
extensional flow in Figure 5 of [43].

The pressure for both the semi-flexible and stiff fibers is given in Figure 10 to give a complete
description of the fluid. Notice, as with the stress, that the extreme values of the pressure in the
semi-flexible fiber case are larger in magnitude than those in the stiff case.

5. MULTIPLE FIBERS

Modeling the hydrodynamic interactions between multiple filaments has a variety of applications
from polymer suspensions to non-Newtonian fluids. The method of regularized Stokeslets can be
used to model multiple immersed bodies in addition to the earlier single fiber studies. The formula-
tion given in Equation (30) only needs to be modified slightly to model multiple fibers. Namely, the
elastic and bending forces need to be formulated in such a way that the positions of the regularized
Stokeslets constituting a particular fiber only affect the elastic and bending forces calculated on that
same fiber. In the notation of Equation (30), let X contain all regularized Stokeslets but arrange the

Figure 9. Stress component o7 at fixed x = 0.5 cm as a function of vertical position y for the semi-flexible
fiber shown in Figure 2. Each curve represents a different dimensionless time value.
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(a) (b)

Figure 10. Pressure for semi-flexible and stiff fibers in the configurations shown in (a) Figure 2(c) and (b)
Figure 3(c).

elements of X so that the points composing each fiber are grouped together. Correspondingly, A.
and Ay become block diagonal matrices, where each block contains the discretization discussed in
Section 3.1.

Consider modeling two fibers immersed in cellular Stokes flow, one of which has the same initial
parameters to the semi-flexible fiber shown in Figure 2. The second fiber has identical parameters
to the first with the exception of initial position. With the stagnation point labeled as the origin and
a cell width of W = 3 cm, the second fiber begins in a horizontal position with its left-most point
located at (0.3,3 x 107%) cm. The top row in Figure 11 shows the flow resulting from the immersed
fiber shown in Figure 2 (although at different time increments), whereas the bottom row of Figure 11
shows the multiple fiber case discussed above. Notice that the presence of the second fiber quickly
affects the buckling structure of the first fiber compared with its model in isolation.

In [45], slender-body formulation was used to simulate the motion of two immersed fibers. That
approach prevents the fibers from intersecting by imposing artificial forces on the fibers. How-
ever, there are no such forces in the model presented in this paper. A more detailed exploration of
modeling multiple immersed fibers with regularized Stokeslets is a direction of future work.

6. CONCLUSIONS

In this study, we implement the method of regularized Stokeslets to model a semi-flexible, approx-
imately inextensible fiber immersed in two-dimensional cellular Stokes flow. The method of reg-
ularized Stokeslets provides a way to calculate the fluid velocity anywhere in the fluid domain
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Figure 11. The immersed fiber in Figure 2 is shown at different time increments here in (a)—(e). A second
identical fiber (with the exception of initial position) is added to the flow in (f)—(j). Notice that the presence
of the second fiber quickly affects the buckling behavior of the original fiber.
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due to regularized forces exerted on the fluid. The fiber modeled with the method of regular-
ized Stokeslets shows qualitative agreement with the experimental observations of Wandersman
et al. [38], changing its behavior near stagnation points as the physical parameters change.

Young and Shelley have modeled this scenario by using slender-body theory, but using the method
of regularized Stokeslets to model this system can provide additional information and flexibility. In
particular, the stress induced by the fiber can be calculated with the method of regularized Stokeslets.
The regularized expressions for velocity, stress, and pressure in two dimensions are derived follow-
ing [31]. The regularized Stokeslet modeling results are qualitatively in agreement with those of
Young and Shelley [29]. In calculating the stress and pressure for both semi-flexible and stiff fibers,
the results presented here show interesting connections between fiber curvature and spatial stress
distribution.

A possible direction of future inquiry is in comparing the effects of treating the fiber’s inexten-
sibility condition as a chain of stiff Hookean springs versus a line tension formulation. In addition,
continued modeling of multiple immersed fibers with regularized Stokeslets is a direction for future
work. Careful comparisons with the slender-body results in [45] and modeling more immersed fibers
are probable directions for future investigation. The possible future directions of this work pro-
vide an opportunity to explore other immersed structures that interest both the biological and fluid
dynamics communities.
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