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Abstract
In this work we develop a theoretical model to explain the equilibrium spheroidal deformation of

a giant unilamellar vesicle (GUV) under an alternating current (AC) electric field. Suspended in

a leaky dielectric fluid the vesicle membrane is modeled as a thin capacitive spheroidal shell, and

the equilibrium vesicle shape results from balancing the mechanical forces from the viscous fluid,

the elastic membrane and the imposed electric field. Our spheroidal model predicts a deformation-

dependent transmembrane potential, and is able to capture large deformation of a vesicle under

an electric field. Detailed comparison against both experiments and small-deformation (quasi-

spherical) theory showed that the spheroidal model gives better agreement with experiments in

terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field

strength and frequency. The spheroidal model allows for an asymptotic analysis on the crossover

frequency for a prolate vesicle to cross over to an oblate shape (or vice versa), and comparisons

show the spheroidal model gives better agreement with experimental observations.

1



I. INTRODUCTION

The electro-deformation and electro-dynamics of vesicles (closed pure lipid bilayer mem-

branes) have been a paradigm for understanding how a biological cell behaves under an

electric field. Vesicles are known to change their shape depending on the frequency of the

imposed alternating current (AC) electric fields and the mismatch in fluid conductivities1–4.

Changes in vesicle orientation, dielectrophoresis and electrorotation have also been observed.

Under direct current (DC) electric fields, both vesicles and biological cells tend to undergo

large deformations with aspect ratios reaching ten. The permeabilization of vesicles mem-

branes using electric fields has also generated a lot of practical and modeling interest,

especially in the biotechnology industry. Electroporation, the process of perforating the

membrane by applying an (often DC) electric field, has been proposed as a method for de-

livering molecules into living organisms5–13. Most recently electroporation has been used for

measurements of various properties of the cell membranes13,14.

The earliest theories of vesicle electro-deformation15,16 were based on minimizing the total

surface energy, consisting of the membrane mechanical energy (from tension and bending)

and electrical energy (from Maxwell stresses). These models focus on conductivity ratio

≈ 1, and as a result the models were only able to predict prolate shape. Extension of these

models17,18 allow for large conductivity mismatch and predict the various shapes observed

experimentally4, even though poor quantitative agreement with the experiments is found.

Hyuga et al. 19,20 proposed the first theory (to our knowledge) beyond the surface energy

minimization approach. Sadik et al. 21 modified this approach to model the deformation of

spheroidal vesicles under strong strong electric fields.

Vlahovska et al. 22 proposed a perturbative method to study the dynamics and defor-

mation of a nearly-spherical vesicle subject to weak AC electric fields. Assuming small

asphericity, they used the transmembrane potential for a dielectric spherical shell in AC

fields in the analyses. The small-deformation results are in qualitative agreement with ex-

periments in terms of shape elongation and the transition frequency between prolate and

oblate vesicle. Yet the small-deformation theory does not apply to vesicles subjected to

moderate and strong electric fields, where deformations are well beyond the nearly spher-

ical shape1. Zhang et al. 23 proposed a spheroidal model to study the transient dynamics

of highly deformed vesicles under strong DC electric fields. Assuming that vesicles remain

spheroidal under a slowly varying DC electric field, which is well supported by experimental

findings in1,21,24, their spheroidal results are in quantitative agreement with experimental

data23 in terms of the vesicle aspect ratio and its response to an electric pulse.

In this article, we extend the spheroidal model in23 to study the equilibrium electro-

deformation of a vesicle in AC fields. Unlike the dynamical approach for solving the trans-

membrane potential in23, we develop a model for the equilibrium transmembrane potential

for a spheroidal dielectric shell in AC fields. The article is organized as follows: In § II we

formulate the problem. In § II A we present the transmembrane potential for a spheroidal

dielectric shell, we then derive the governing equation in § II B. Our findings are summa-

rized in § III: We first present a comparison between the spheroidal model and the small

deformation theory for a prolate vesicle; in § III A we consider the dependence of vesicle de-
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FIG. 1. Illustration of a vesicle suspended in a leaky dielectric fluid. The typical membrane

thickness, d = 5 nm. The bottom inset shows the lipid bilayer structure of the membrane, and the

top inset shows the three dielectric spheroidal shells with electric impedance defined in equation 9.

formation, transmembrane potential and electric stresses on the field frequency. In § III B,

we show the predictions, as well as comparison with experiment for the shape elongation

and transition frequency.

II. PROBLEM FORMULATION

Figure 1 illustrates a spheroidal vesicle enclosing an interior dielectric fluid (µi, εi, σi)

suspended in another dielectric fluid with (µe, εe, σe). µ, ε and σ are the fluid viscosity,

dielectric permittivity and conductivity, respectively, and the subscript denotes interior (i)

or exterior (e) fluids. Typical values of the fluid viscosity (larger than 10−3 Pa s) and vesicle

size (several µm’s) indicate that the fluid inertia are negligible, consequently the flow velocity

in both interior and exterior fluids is governed by the incompressible Stokes equations

µj∇2uj = ∇pj, ∇ · uj = 0, (1)

where p is the fluid pressure, u is the fluid velocity with the subscript j = e for exterior fluid

or j = i for interior fluid. The boundary conditions for the velocity are u = 0 in the far-field,

and u = dx
dt

on the vesicle membrane, with x denoting the vesicle membrane location. The

balance of stresses on the membrane gives

n · JT + SK = τmem, (2)
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where JfK ≡ fe−fi denotes the difference between exterior and interior and n is the outward

normal unit vector on the membrane. T = −pI + µ
(

(∇u)T +∇u
)

is the hydrodynamic

stress with I the identity tensor, and S = ε~E~E − ε
2

(
~E · ~E

)
I is the Maxwell stress. The

membrane traction (force density) consists of membrane tension and bending forces,

τmem = 2σhHn− κ
(
4H3 − 4KH + 2∇2

sH
)
n, (3)

where σh, κ, H and K are the membrane tension, bending rigidity, mean curvature and

Gaussian curvature, respectively. The (homogenous) membrane tension is related to the

excess area ∆ ≡ A
4πr20
− 1 as

σh = s0 exp

[
8πκ∆

kBT

]
, (4)

where s0 = σ0/(κ/r
2
0) is the dimensionless membrane tension.

The electric field is harmonic (~E = ~E0e
iωt) and irrotational, which implies that ~E = −∇φ

with φ the electric potential that satisfies the Laplace equation both inside and outside the

vesicle

∇2φj = 0. (5)

Across the membrane the electric potential has a jump

φi − φe = ∆φ, (6)

due to the capacitive nature of the vesicle membrane. The induced charges on the two sides

of membrane cause a discontinuity in the displacement vector

Jε~E · nK = Q(ω, t), (7)

where Q is the induced charge density. If we neglect the effects of charge convection along

the membrane, the electric current conservation at the interface gives

Jσ~E · nK = −dQ
dt
≈ −∂Q

∂t
. (8)

Substituting equation 7 into equation 8 yields the continuity condition

J−K∇φ · nK = 0, Kj = σj + iωεj, (9)

where the dielectric properties are characterized by the complex electrical impedance. j can

be i, m, and e, referring to interior, membrane, and exterior of the vesicle. σj, εj and ω

are the conductivity, permittivity and electric field frequency, respectively. For the vesicle’s

impedance Km = Gmd + iCmd, where Gm and Cm are the membrane conductance and

capacitance.

We non-dimensionalize the governing equations by scaling length to r0, time to the charg-

ing time tc = εe/σe, the electric potential to E0r0, bending force and membrane tension to

κ/r20 and electric stresses to εeE
2
0 . For example the resultant dimensionless complex con-

ductivities are given by

Ke =
1

x
+ i

ω

x
, Ki =

σr
x

+ i
ωεr
x
, Km =

σm
σex

+ iω
εm
εex

(10)
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where the conductivity and permittivity ratios are defined as σr = σi
σe

and εr = εi
εe

. x = d
r0

is the dimensionless thickness. σm and εm are the membrane conductivity and permittivity,

respectively.

A. Transmembrane potential

In the leaky dielectric model the bulk charges are assumed to neutralize instantaneously,

leaving induced charges on the interface between fluids of mismatched dielectric constant

(such as electric conductivity). Because the membrane is impermeable, the induced surface

charges accumulate on either side of the vesicle, giving rise to an electric potential jump

across the membrane. In the past studies of vesicles subjected to ac electric fields22,25 the

transmembrane potential for a spherical shell is often used26–28. However the transmembrane

potential depends on the geometry of the vesicle, and even small deviations from an initial

spherical shape may induce noticeable changes in the potential jump29.

Analytical studies on the induced transmembrane potential for spheroidal vesicles re-

veal that the membrane thickness is non-uniform due to the alignment of cell boundaries

with spheroidal surfaces30,31. Klee and Plonsey32 used numerical simulations to compute

the spheroidal potential jump, while Gimsa et al. 29,33,34 devised a resistor-capacitor (RC)

approach to determine the induced transmembrane potential. Later Konik35 showed that

small variations in the membrane thickness of spheroidal cells have no effects on the trans-

membrane potential.

Here we developed an analytical model of the transmembrane potential for a spheroidal

shell in an ac electric field. The analytical solution is based on the truncated solution

for the electric potential in the prolate spheroidal coordinates system (ξ, η), related to the

cylindrical coordinates (r, z) by

z = cξη, r = c
√

(ξ2 − 1)(1− η2), (11)

where c ≡
√
b2 − a2 is the semi-focal length. Surfaces of constant ξ ∈ [1,∞) are spheroids

while surface of constant η ∈ [−1, 1] are hyperboloids. As such, the prolate vesicle surface

is given by ξ = ξ0(t) ≡ a
c
.

The electric potential exists in three regions: interior (i), exterior (e), and the membrane

(m), see the inset in figure 1. The transmembrane potential is obtained by solving Laplace

equations in all three domains. We assume that the potential in each domain takes the

truncated form23,36–38:

φj = (αjξ + βjQ1(ξ)) η, j = i, e,m, (12)

where Q1 is the Legendre polynomial of the second kind. αj, βj are obtained from the

boundary conditions. Boundary conditions in the far-field and inside the vesicle yield αe =

−c and βi = 0. The remaining coefficients βe, αm, βm, and αi are similarly determined from

boundary conditions on the membrane, see Appendix B. Substituting the coefficients in

equation 12 we get :

∆φ = φi(ξi)− φe(ξe) ≡ Vmη,
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FIG. 2. Magnitude of transmembrane potential calculated from equation 13 for various aspect

ratios. The thick (thin) dash-dotted lines are prolate, σr = 1.5 (oblate, σr = 0.5) predictions, and

the dashed line is the spherical shell potential. The inset shows Vm for two prolate cases.

where Vm = cF (ω)/D(ω) is the ‘amplitude’ of the potential, D(ω) is given by equation B7,

and

F (ω) = −Ke(Qe − ξeQ′e) ((Ki −Km)ξiQe + (−Kiξe +Kmξi)Qi

+Km(ξe − ξi)ξiQ′i) . (13)

The functions Qe ≡ Q1(ξe), Qi ≡ Q1(ξi), Q
′
e ≡ Q′1(ξe), Q

′
i ≡ Q′1(ξi).

In figure 2 we provide a comparison of the transmembrane potential magnitude Vm be-

tween the spherical shell (dashed lines) and spheroidal shells (dash-dotted lines). Thick lines

are for prolate with σr = 1.5, and thin lines are for oblate with σr = 0.5. At low frequencies,

the spherical shell potential reaches the maximum value Vm = 3/2 while for the spheroidal

shell Vm plateaus to a maximum that depends on the vesicle aspect ratio a/b: The larger

the shape elongation, the larger the maximum transmembrane potential, in agreement with

earlier findings about the dependence of the potential on shape29. We note that by solving

the Laplace equation in each dielectric spheroidal shell, the η dependence in our spheroidal

shell is the same as that in the spherical shell, while Gimsa et al’s model cannot capture the

η dependence.
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B. Electrohydrodynamic deformation

With the transmembrane potential for the spheroidal shell in equation 13, we can now

compute the electric potentials in the interior and exterior of the vesicle as

φe = (−cξ + αQ1(ξ)) ηe
iωt, (14)

φi = βξηeiωt, (15)

where α and β are obtained by satisfying the boundary conditions in equations 6 and 9:

α =
cξ0 (Kr − 1)−KrVm

KrQ1 − ξ0Q′1
, β =

c (ξ0Q
′
1 −Q1)− VmQ′1

KrQ1 − ξ0Q′1
, (16)

with Kr = Ki

Ke
. We write the electric field ~E as the real part of E : ~E = <(~E) = 1

2

(
~E + ~E∗

)
(where ∗ denotes complex conjugation), and substitute it into the Maxwell stress39

S(ω) =
ε

4

(
~E ~E∗ + ~E∗~E − |E|2 I

)
+
ε

4

(
~E ~E + ~E∗~E∗ − 1

2

[
~E · ~E + ~E∗ · ~E∗

]
I

)
. (17)

In the above equation, the first group on the right hand side is the time-averaged Maxwell

stress tensor, and the second group is the time-dependent (harmonic) terms. In the following

we consider only the time-independent terms for equilibrium vesicle shapes.

We focus on the axi-symmetric incompressible fluid velocity field, which can be computed

from a stream function ψ for both inside and outside the vesicle. The stream function satisfies

the equation

(E2)2ψ = 0, with E2 =
1

c2 (ξ2 − η2)

[
(ξ2 − 1)

∂2

∂ξ2
+ (1− η2) ∂

2

∂η2

]
. (18)

The general solution for the stream function takes the form40,41

ψ = g0(ξ)G0(η) +
∞∑
n=2

(gn(ξ)Gn(η) + hn(ξ)Hn(η)), (19)

where Gn and Hn are the Gegenbauer functions of the first and second kind, respectively.

Detailed expressions of the functions gn and hn can be found in40,41. In this work we seek a

solution truncated at leading order23,36–38

ψe =
(
A1

3H1(ξ) + A3
3H3(ξ)

)
G3(η), (20)

ψi =
(
B3

3G3(ξ) +B5
3G5(ξ)

)
G3(η). (21)

The four coefficients A’s and B’s, along with the shape function (ξ0 for prolate or λ0 for

oblate), can be completely determined from the kinematic continuity condition, velocity

boundary conditions and the stress balance (equation 2) on the membrane. Following the

procedures in23,42, we project the stress balance onto the corresponding velocities to close

the system: ∫
ξ=ξ0(t)

u [JTξηK + JSξηK] ds = 0, (22)∫
ξ=ξ0(t)

v [JTξξK + JSξξK− τmem] ds = 0. (23)
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In prolate spheroidal coordinates,

Tξξ = 2µ

(
∂v

hξ∂ξ
+

u

hξhη

∂hξ
∂η

)
, Tξη = µ

(
∂(u/hη)

∂ξ

hη
hξ

+
∂(v/hξ)

∂η

hξ
hη

)
, (24)

Sξξ =
ε

4

(
EξE∗ξ − EηE∗η

)
, Sξη =

ε

4

(
EξE∗η + EηE∗ξ

)
, (25)

where hξ and hη are the scale factors in the spheroidal coordinates, Eξ = −∂φ
∂ξ

and Eη = −∂φ
∂η

are the normal and tangential electric field. The excess area in equation 4 can be expressed

in terms of ξ0 as

∆ =
1

2

(
1− ξ−20

)−2/3 [
1− ξ−20 +

√
ξ20 − 1 arcsin

(
ξ−10

)]
− 1. (26)

The above derivation can be modified for the oblate case with appropriate transformation:

ξ → iλ and c→ −ic̄ with i the imaginary unit. Thus the oblate spheroidal coordinates (λ, η)

are related to the cylindrical coordinates (r, z) as z = c̄λη, r =
√

(λ2 + 1)(1− η2), with

c̄ ≡
√
b2 − a2 for λ ∈ [0,∞) and η ∈ [−1, 1]. Surfaces of constant λ are oblate spheroids

while surfaces of constant η are hyperboloids. Consequently in oblate coordinates

E2 =
1

c2 (λ2 + η2)

[
(λ2 + 1)

∂2

∂λ2
+ (1− η2) ∂

2

∂η2

]
,

the electric potential coefficients and excess area take the following forms

α =
c̄λ0 (Kr − 1)−KrVm

KrQ1 − λ0Q′1
, β = i

[c̄Q1 + (Vm − cλ0)Q′1]
KrQ1 − λ0Q′1

, (27)

∆ =
1

2

(
1 + λ−20

)−2/3 [√
λ−20 + λ−40 + arctanh

((
λ20 + 1

)−1/2)]− 1. (28)

Expressing all four coefficients A′s and B′s in terms of ξ0 for prolate and λ0 for oblate,

we obtain the governing equation for the shape function as

dχ

dt
=

δ

[
QNf21 +QT

f11 (µrf22 + f23)

µrf14 + f15
− Ca−1E (σhf24 + fκ)

]
2

3
(µrf25 + f26)

, (29)

QN = ± 1

2c2
[
2c2 − 2cτ3 (Q′1 +Q1/χ) +

(
τ 23 + τ 24

) (
Q′21 + (Q1/χ)2

)
−2
(
τ 21 + τ 22

)
/εr
]
, (30)

QT =
1

2c2
[
c2χ+

(
τ 23 + τ 24

)
Q1Q

′
1 − cτ3 (Q1 + χQ′1)

−
(
τ 21 + τ 22

)
χ/εr

]
, (31)

where χ = ξ0 for prolate and λ0 for oblate, and the symbols ± designate prolate (+) or oblate

(−). CaE =
εer30E

2
0

κ
is the electric capillary number, and δ = tc

tEHD
with tEHD = µi

εeE2
0

the

characteristic electro-hydrodynamics (EHD) timescale. The functions f11−f26, fκ are given
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FIG. 3. Equilibrium deformation versus frequency ω for a prolate vesicle with σr = 1.5; CaE = 6837

and s0 = 1. In (a) and (b), solid curves are from the spheroidal model and dashed curves are from

the small-deformation model. (c) Normal (thin curve) and tangential (thick curve) electric stresses

from the spheroidal model (equation 30 and equation 31).

by equations A1- A11 for the prolate shape, and equations A13- A23 for the oblate shape.

Setting dχ
dt

= 0 the steady-state equilibrium shape is obtained by solving the non-linear

equation:

QNf21 +QT
f11 (µrf22 + f23)

µrf14 + f15
= Ca−1E (σhf24 + fκ) . (32)

Equation 32 shows that an equilibrium shape is achieved when the electric forces (on the

left) are balanced by the tension and bending forces (on the right).

III. RESULTS

A. Comparison with small-deformation theory

The shape elongation a/b = ξ0/
√
ξ20 − 1 for prolate while a/b = λ0/

√
λ20 + 1 for oblate.

Figure 3(a) shows the equilibrium shape elongation from the spheroidal model (solid lines)

and the small-deformation theory22 (dashed lines) for σr = 1.5, CaE = 6837 and s0 = 1.

We found that, for the same membrane tension s0, the spheroidal model predicts larger

deformation than the small deformation theory at a given frequency. The corresponding

transmembrane potential magnitude Vm and the electric stresses (the normal component

QN and the tangential component QT ) are shown in figure 3(b) and (c), respectively. As

we expect from § II A, the membrane potential from the spheroidal model is higher at low

frequencies. The decrease in membrane potential at ω ≈ 5 × 10−3 in (b) coincides with an

increase in the tangential electric stress, and a decrease in the electric pressure in (c).
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FIG. 4. Comparison between the experimental data of Aranda et al. 4 (symbols), the small defor-

mation theory (dashed curves), and the current model (solid curves). (a) σr > 1; (b) σr < 1.

Experiment s0 used in spheroidal model s0 used in small-deformation model

σr = 4.3, r0 = 21.6µm 43000 3000

σr = 1.7, r0 = 27.5µm 80000 20000

σr ≈ 1 (Pr), r0 = 27.5µm 1000 1

σr ≈ 1 (Ob), r0 = 37.5µm 10−6 10−7

σr = 0.5, r0 = 12.8µm 1000 100

σr = 0.4, r0 = 27.2µm 70 1

TABLE I. Fitted values of s0 = σ̄0r
2
0/κ for the experimental data in4 with εr = 1, µr = 1,

κ = 10kBT and E0 = 0.2 kV/cm.

B. Comparison with Experiment

1. Equilibrium shape elongation versus frequency

Experiments4 show that the equilibrium vesicle shape is spherical at very high frequencies

(ω > 103), where and the transmembrane potential is zero. At moderate frequencies (ω <

102) the equilibrium vesicle shape can be prolate if σr > 1 or oblate if σr < 1. In particular,

the equilibrium oblate vesicle for σr < 1 crosses over to the prolate equilibrium shape for

ω < 10−2. These experimental findings are summarized (symbols) in figure 4 and figure 5,

where we also compare between the spheroidal model (solid lines) and the small-deformation

model22 (broken lines). Following the approach in22 we use s0 as a fitting parameter (see

Table I) and fix the bending stiffness κ = 10kBT . s0 used in the spheroidal model is at least

an order of magnitude larger than in small deformation. Nevertheless, they are comparable

to values reported in previous work24.

Figure 4(a) is for σr > 1 (‘transition’ (1) in4) where the equilibrium vesicle shape elon-

gation is always greater (prolate) or equal (spherical) to one. We observe better agreement

10



10
−1

10
0

10
1

10
2

0.6

0.7

0.8

0.9

1

1.1

ω

S
h
a
p

e
 e

lo
n
g
a
ti
o

n

 

 

Spheroidal model
Small deformation
Spheroidal model
Small deformation
Aranda (2008)
Aranda (2008)

(a)

10
−4

10
−2

10
0

10
2

10
4

1

1.05

1.1

1.15

1.2

ω

S
h
a
p

e
 e

lo
n
g
a
ti
o

n

 

 

κ=10
−20

J

κ=10
−20

J

κ=4×10
−20

J

κ=4×10
−20

J

κ=2×10
−19

J

κ=2×10
−19

J

Aranda (2008) σ
r
=4.5

(b)

FIG. 5. Comparison between the experimental data of Aranda et al. 4 (symbols), the small defor-

mation theory (dashed curves), and the spheroidal model (solid curve). (a) σr ≈ 1. (b) σr = 4.5.

from the spheroidal model for σr = 1.7, while for σr = 4.3 the spheroidal results are in

better agreement except for ω > 10. Figure 4(b) is for σr < 1 (‘transition’ (4) in4) were

the equilibrium vesicle shape can cross over from spherical at high frequencies ω > 20 to

oblate at intermediate frequencies ∼ 3 × 10−3 ≤ ω ≤∼ 1, and to prolate at low frequen-

cies 10−4 ≤ ω ≤∼ 3 × 10−3. In this case neither model agrees with the experiments for

1 > ω > 0.5, where the equilibrium vesicle shape crosses over from oblate to spherical as ω

increases.

In ‘transition’ (3) of4 where σr is close to unity, the value of σr determines the shape of

the vesicles: Prolate for σr > 1 and oblate for σr < 1. Figure 5(a) shows the comparison

between models and experiments for σr ≈ 1. Next we focus on the effect of bending rigidity

on the equilibrium vesicle shape. For experiments in4, the bending stiffness varies between

4× 10−20 J24 and 2.3× 10−19 J43. In addition, recent measurements on SOPC bilayer mem-

branes44 yielded a bending stiffness as low as 7× 10−21 J. Figure 5(b) shows a comparison

between theories and experiments for σr = 4.5 and with various values of the bending stiff-

ness. Both theories are very sensitive to changes in the bending stiffness: We found good

agreement with experiments up to κ = 4 × 10−20 J for the spheroidal model, and up to

κ = 10−20 J for the small deformation. Beyond these values, the two models overestimate

the deformation.

Vesicles take various equilibrium shapes at different frequencies and conductivity ratios.

Aranda et al. 4 constructed a morphological diagram on the ω − σr plane by performing a

series of experiments using over 60 vesicles ranging 4−50µm in size. Fixing the conductivity

inside the vesicles and varying the conductivity of the external fluid phase, they subjected

the vesicles to an AC field at a frequency ranging between ≈ 2 kHz− 20 MHz.

Figure 6 shows the shape variations in the ω − σr plane. The experimental data points

indicate the value at which the vesicle changes shape as frequency increases. Figure 6 also

compares the predictions from the spheroidal model, the small deformation theory and the

result using the energy minimization approach17. The spheroidal and small deformation

models give agreements with experiments: The prolate-to-oblate and prolate-to-sphere fre-
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FIG. 6. Morphological phase diagram for κ = 10kBT , E0 = 2× 104 V/m. The conductivity ratio

σr is determined by varying the conductivity of the external medium (σe) and holding the interior

fixed at σi = 15µS/cm (�), 65µS/cm (©), 130µS/cm (
a

). Solid lines are from the spheroidal

model with s0 = 45000, dashed lines are from the small-deformation model with s0 = 10000, and

the starred-solid lines are from the energy minimization approach17.

quencies increase with σr, while the oblate-to-sphere frequencies decrease with increasing

σr. The surface energy minimization model in17 (starred-solid lines) only gives qualitative

agreement with experiments.

2. Prolate-to-oblate crossover frequency

The frequency at which the equilibrium vesicle shape crosses over from prolate to oblate

depends on the conductivity ratio and vesicles size4,17,45–47. In a recent experiment Peterlin17

put vesicles of different sizes under a sequence of step-wise frequency changes, ranging from

hundreds to a thousand hertz for a duration of ≈ 3 secs with the frequency increasing or

decreasing around the crossover frequency, see the symbols in figure 7(a).

At the crossover frequency (from prolate to oblate, for example), the equilibrium vesicle

shape is spherical, which corresponds to the limit ξ →∞, ∆ ≈ 0, and Vm reduces to spherical

shell potential. This allows us to perform an asymptotic analysis on the equilibrium vesicle

shape elongation near the crossover frequency, where we expand all functions of ξ in terms

of 1/ε2 with ε� 1. For example, the Legendre polynomial Q1(ξ) and its derivative take the

form Q1 ∼
1

3ξ2
+

1

5ξ4
+O

(
1

ξ6

)
, Q′1 ∼ −

2

3ξ3
− 4

5ξ5
+O

(
1

ξ7

)
. We expand the semi-focal

length c ∼ 1

ξ
+O

(
1

ξ3

)
, and similarly for all the other functions in Appendix A. We then

substitut these expansions into equations 16, 30 and 32, and obtain an equation expanded in

12
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FIG. 7. (a) Shape elongation near the crossover between prolate and oblate for σr = 0.9, d = 4 nm,

κ = 1.2×10−19 J, and E0 = 500 V/m. Symbols are the experimental data in17: Full (open) symbols

are with increasing (decreasing) frequency. s0 = 1 is used in both spheroidal and small-deformation

models. (b) Prolate-oblate crossover frequency, ω∗ as a function of vesicle radius r0.

1/ξ0
∑
n=0

anξ
−2n
0 = 0, where the coefficients an are functions of fluid and membrane properties.

Keeping all the leading-order terms at O(1/ξ20) we obtain an equation for ξ20 , which gives

the solution

ξ0(ω) =

√
2

35

√
−CaEABC

G
(33)

with coefficients A, B, C and G given in Appendix D. The leading-order shape elongation

for a prolate vesicle near the crossover frequency is
a

b
∼ 1 +

1

2ξ20
+ O

(
1

ξ40

)
. Similarly

for the crossover from oblate to prolate, the leading order shape elongation would be
a

b
∼

1− 1

2λ20
+O

(
1

λ40

)
.

Figure 7(a) shows the comparison between the asymptotic analysis on the spheroidal

model (solid line), calculation from the small deformation model (dashed line) and experi-

ments (symbols). First of all, we observe a small difference in the crossover frequency (value

of ω∗ when shape elongation is unity) between the solid and the dashed lines: We attribute

this small disagreement to the differences in treating the stress balance on the membrane

between the two models. Secondly, we observe a significant difference in the slope at the

crossover frequency between the two curves, with the spheroidal model in better agreement

with the experimental data. We have tried to adjust s0 to fit the small-deformation model

to experimental data with the same slope at the crossover frequency, but we are unable to

find a reasonably good fit. The crossover frequency also depends on the initial spherical

size of vesicles. Figure 7(b) shows the comparison results of the experiment in17, where

the spheroidal results (solid curves), the small-deformation results (dashed curves) and the

energy-minimization results (starred solid curves) are all plotted against the initial spherical

radius r0. All three theories show good agreement with the experimental data.
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IV. CONCLUSION

In this work we constructed a spheroidal model to study the equilibrium deformation of a

vesicle under ac electric fields within the leaky dielectric framework. Such an approach has

been shown to capture large equilibrium electro-deformation of a viscous surfactant-covered

drop38 and the transient dynamics of a vesicle in a dc field23. In our spheroidal model

the vesicle membrane is modeled as a non-conducting capacitive elastic membrane with a

homogeneous tension that depends on the excess area. We developed a spheroidal shell

model to compute the potential across the vesicle membrane. By adjusting the membrane

tension coefficient s0, we are able to reproduce the experiments in terms of the dependence

of the vesicle shape elongation on the frequency ω, conductivity ratio σr, and the initial

spherical radius of the vesicle. We further explore the effects of bending rigidity on the

shape elongation. In addition we conducted an asymptotic analysis on our spheroidal model

around the prolate-oblate crossover frequency, and we find very good agreement with the

experiments in terms of both the value of crossover frequency and the rate of change of

shape elongation with respect to frequency.

In this work we did not consider effects of membrane conductance and displacement

currents across the membrane, both of which are found to destabilize a planar membrane

under electric fields48–50. We focus on the equilibrium deformation and ignore the time-

dependent harmonic stresses. Consequently we did not consider the dynamic transient and

oscillation around the averaged equilibria, yet our spheroidal model can easily incorporate

the time-dependent stresses and this is now part of an ongoing work. In addition the vesicle

area is not held constant in our model. Furthermore our spheroidal model is applicable only

to spheroidal deformation, and cannot describe the dynamics and equilibrium shapes of an

axi-symmetric non-spheroidal vesicle.

We are now refining our model by replacing the leaky dielectric fluids with electrolytes

in the solvents, in which case the electric potential no longer satisfies the simple Laplace

equation, but the Poisson-Boltzmann equations that take into account the transport of

various charged species in the fluids. The solvents are known to destabilize lipid membrane

under a dc electric field. It is reasonable to expect that much more complex dynamics and

equilibrium shape for a vesicle immersed in electrolytes under an ac field. For example,

depending on the net charges in the bulk, the vesicle may have very different morphology

under an electric field. We are currently investigating how the morphological phase diagram

in figure 6 may be altered by solvents.
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Appendix A: Integrals in the spheroidal model

The functions f11(ξ0)− f15(ξ0) are given by

f11 =

∫
ηG3(η)

ξ20 − η2
dη, (A1)

f12 =
1

ξ20 − 1

∫
G3(η)

(
2ηG′3(η)

(ξ20 − η2)2
+

G′′3(η)

ξ20 − η2

)
dη, (A2)

f13 =
G′3G

′′
5 −G′5G′′3
2N

f11, (A3)

f14 =− ξ0H ′3
∫

ηG3(η)

(ξ20 − η2)2
dη +

H ′′3
2
f11, (A4)

f15 =ξ0H
′
3

∫
ηG3(η)

(ξ20 − η2)2
dη − (G3G

′′
5 −G5G

′′
3)H ′3

2N
f11. (A5)

Furthermore, the functions f21(ξ0)− f26(ξ0) are given by

f21 =
ξ20
2

∫
(3η2 − 1)(η2 − 1)

ξ20 − η2
dη, (A6)

f22 =−H ′3
∫

(1− 3η2)(2η4 + ξ20 − 3ξ20η
2)

(ξ20 − η2)2
dη + 3H3ξ0

∫
1− 3η2

ξ20 − η2
dη, (A7)

f23 =− 49

30N
G3H

′
3(1− 3ξ20) +H ′3

∫
(1− 3η2)(2η4 + ξ20 − 3ξ20η

2)

(ξ20 − η2)2
dη, (A8)

f24 =
1

c

[
ξ0(ξ

2
0 − 1)1/2

∫
γ (3η2 − 1)

(ξ20 − η2)3/2
dη +

ξ0
(ξ20 − 1)1/2

∫
γ (3η2 − 1)

(ξ20 − η2)1/2
dη

]
, (A9)

f25 =− ξ0
ξ20 − 1

∫
(1− 3η2)(2ξ20 − η2 − 1)G′3(η)

(ξ20 − η2)2
dη + 3ξ0

∫
1− 3η2

ξ20 − η2
dη

− (µr − 1)f12 + f13
µrf14 + f15

f22, (A10)

f26 =
ξ0

ξ20 − 1

∫
(1− 3η2)(2ξ20 − η2 − 1)G′3(η)

(ξ20 − η2)2
dη − 49

30N
(1− 3ξ20)G′3

− (µr − 1)f12 + f13
µrf14 + f15

f22, (A11)

fκ =
−72 + 106ξ20 − 225ξ40 + 135ξ60 + 45ξ40 (4− 3ξ20)

√
ξ20 − 1 arccsc(ξ0)

15c3ξ30(ξ20 − 1)2
. (A12)
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The functions f11(λ0)− f15(λ0) in are given by

f11 =

∫
ηG3(η)

λ20 + η2
dη, (A13)

f12 =
1

λ20 + 1

∫
G3(η)

(
−2ηG′3(η)

(λ20 + η2)2
+

G′′3(η)

λ20 + η2

)
dη, (A14)

f13 =
G′3G

′′
5 −G′5G′′3
2N

f11, (A15)

f14 =λ0H
′
3

∫
ηG3(η)

(λ20 + η2)2
dη − H ′′3

2
f11, (A16)

f15 =− λ0H ′3
∫

ηG3(η)

(λ20 + η2)2
dη +

(G3G
′′
5 −G5G

′′
3)H ′3

2N
f11. (A17)

Furthermore, the functions f21(λ0)− f26(λ0) are given by

f21 =
λ20
2

∫
(3η2 − 1)(η2 − 1)

λ20 + η2
dη, (A18)

f22 =H ′3

∫
(3η2 − 1)(λ20 − 3λ20η

2 − 2η4)

(λ20 + η2)2
dη + 3λH3

∫
3η2 − 1

λ20 + η2
dη (A19)

f23 =−H ′3
∫

(3η2 − 1)(λ20 − 3λ20η
2 − 2η4)

(λ20 + η2)2
dη +

49

30N
(1 + 3λ20)g3H

′
3, (A20)

f24 =
1

c

[
λ0(λ

2
0 + 1)1/2

∫
γ (1− 3η2)

(λ20 + η2)3/2
dη +

λ0
(λ20 + 1)1/2

∫
γ (1− 3η2)

(λ20 + η2)1/2
dη

]
, (A21)

f25 =
λ0

λ20 + 1

∫
(3η2 − 1)(2λ20 + η2 + 1)G′3(η)

(λ20 + η2)2
dη + 3λ

∫
3η2 − 1

λ20 + η2
dη

+
(µr − 1)f12 + f13
µrf14 + f15

f22, (A22)

f26 =− λ0
λ20 + 1

∫
(3η2 − 1)(2λ20 + η2 + 1)G′3(η)

(λ20 + η2)2
dη +

49

30N
(1 + 3λ20)g

′
3

+
(µr − 1)f12 + f13
µrf14 + f15

f23, (A23)

fκ =
72 + 106λ20 + 225λ40 + 135λ60 − 45λ40 (4 + 3λ20)

√
λ20 + 1 arccoth(

√
λ20 + 1)

15c3λ30(λ
2
0 + 1)2

. (A24)

Appendix B: Transmembrane Potential

The electric potential coefficients βe, αm, βm, αi are obtained from the boundary condi-

tions at ξ = ξe and ξ = ξi (see Figure 1):

(a) Continuity of the potential:

φe(ξe) = φm(ξe), φm(ξi) = φi(ξi), (B1)
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(b) Continuity of the normal component of the complex current density, equation 9:

−Ke

hξ

∂φe
∂ξ

∣∣∣∣
ξe

= −Km

hξ

∂φm
∂ξ

∣∣∣∣
ξe

, −Km

hξ

∂φm
∂ξ

∣∣∣∣
ξi

= −Ki

hξ

∂φi
∂ξ

∣∣∣∣
ξi

. (B2)

Condition a is justified because the normal component of the electric field must be bounded19,27.

The remaining electric potential coefficients are given by:

αi =
cKeKm (ξiQ

′
i −Qi) (Qe − ξeQ′e)
D(ω)

, (B3)

αm =
cKe (ξeQ

′
e −Qe) (KiQi −KmξiQ

′
i)

D(ω)
, (B4)

βm =
cξiKe (Ki −Km) (Qe − ξeQ′e)

D(ω)
, (B5)

βe =
cξiKe (Ki −Km)Qe

D(ω)

+
cξe (Ki(Km −Ke)Qi +Kmξi((Km −Ki)Q

′
e + (Ke −Km)Q′i))

D(ω)
, (B6)

where

D(ω) = KeξeQ
′
e (−KiQi +KmξiQ

′
i)

+Qe

(
KiKmQi + (Ke −Km)(Ki −Km)ξiQ

′
e − ξiQ′iK2

m

)
, (B7)

and Qe ≡ Q1(ξe), Qi ≡ Q1(ξi), Q
′
e ≡ Q′1(ξe), Q

′
i ≡ Q′1(ξi).

Appendix C: Maxwell stresses

The Maxwell stresses in prolate coordinates are given by

JSξξK =
1

4c2

{
η2 (ξ20 − 1)

ξ20 − η2
(
c2 − 2cτ3Q

′
1 +

(
τ 23 + τ 24

)
(Q′1)

2
)

+
ξ20 (η2 − 1)

ξ20 − η2

(
c2 − 2cτ3Q1

ξ0
+
(
τ 23 + τ 24

)(Q1

ξ0

)2
)

−(τ 21 + τ 22 )

εr

(
η2 (ξ20 − 1)

ξ20 − η2
+
ξ20 (η2 − 1)

ξ20 − η2

)}
, (C1)

and

JSξηK =
η

2c2

√
(ξ20 − 1) (1− η2)

ξ20 − η2
{(
c2ξ0 − c(Q1 + ξ0Q

′
1)τ3 +

(
τ 23 + τ 24

)
Q1Q

′
1

)
−
(
τ 21 + τ 22

)
ξ0/εr

}
, (C2)

where τ1 = <[β], τ2 = =[β], τ3 = <[α], and τ4 = =[α]. <[ ] and =[ ] denote the real and

imaginary parts.
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The equivalent equations in the oblate coordinates are

JSλλK =
1

4c2

{
η2 (λ20 + 1)

λ20 + η2

(
c2 − 2cτ3Q

′
1 +

(
τ 23 + τ 24

)
(Q′1)

2
)

+
λ20 (η2 − 1)

λ20 + η2

(
c2 − 2cτ3Q1

λ0
+
(
τ 23 + τ 24

)(Q1

λ0

)2
)

−(τ 21 + τ 22 )

εr

(
η2 (λ20 + 1)

λ20 + η2
+
λ20 (η2 − 1)

λ20 + η2

)}
, (C3)

and

JSληK =
η

2c2

√
(λ20 + 1) (1− η2)

λ20 + η2
{(
c2λ0 − c(Q1 + λ0Q

′
1)τ3 +

(
τ 23 + τ 24

)
Q1Q

′
1

)
−
(
τ 21 + τ 22

)
λ0/εr

}
. (C4)

Appendix D: Asymptotic analysis

A = (2 + σr)
2 + 9ω2, (D1)

B = 2σ2
r(2 + σr)

2 +
(
18σ2

r + C2
m(σr − 1)(2 + σr)

2(5 + 2σr) + 2Cmσr(σr + σ2
r − 2)

)
ω2,(D2)

C = −2σ2
r(2 + σr)

3 (9CaE(19 + 13σr) + 560(2 + σr)(4 + s0))− 71680C2
mω

2 (D3)

+(9CaE(2 + σr)
(
−6σ2

r(121 + 71σr) + Cm(σr − 1)σr(2 + σr)(130 + 107σr)

+C2
m(60 + 23σr)(σr + σ2

r − 2)2
)

+ 280
(
−72σ2

r(2 + σr)
2(4 + s0)

+C2
m (−64s0 − σr(4 + σr)(4 + σr(2 + σr))(12 + σr(6 + σr))(4 + s0))

)
)ω2

−9(−711CaECmσr(σr + σ2
r − 2) + 288σ2

r (6CaE + 35(4 + s0))

+5C2
m(2 + σr)

2(9CaE(σr − 1)2 + 112(2 + σr)
2(4 + s0)))ω

4

−22680C2
m(2 + σr)

2(4 + s0)ω
6,

G = 3CaE
(
(2 + σr)

2 + 9ω2
) (

2σ2
r(2 + σr)

2 +
(
18σ2

r + C2
m(σr − 1)(2 + σr)

2(5 + 2σr) (D4)

+2Cmσr(σr + σ2
r − 2)

)
ω2
)
.
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