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We theoretically investigate the deformation of a viscous drop covered with non-
diffusing insoluble surfactant under a uniform DC electric field. At equilibrium, sur-
factant immobilizes the spheroidal drop surface and completely suppresses the fluid
flow. In this work we focus on the equilibrium electro-deformation of a surfactant-
laden drop in the leaky dielectric framework by developing (1) a second-order small-
deformation analysis and (2) a spheroidal model for a highly deformed (prolate or
oblate) drop. Both models are compared against experimental data and numerical
simulation results in the literature. Our analysis shows how the existence of equilib-
rium spheroidal drop depends on the permittivity ratio, conductivity ratio, surfactant
coverage, and the elasticity number. Furthermore, the spheroidal model highlights
that differences between surfactant effects, such as tip stretching and surface dilution
effects, are greatly amplified at large surfactant coverage and high electric capillary
number. These surfactant effects are well captured in the spheroidal model, but cannot
be described in the second-order small-deformation theory. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4821205]

I. INTRODUCTION

Upon application of an electric field to a weakly conducting (leaky dielectric) drop suspended in
another leaky dielectric fluid, free charges accumulate at the interface between the two fluids while the
bulk remains electrically neutral.1, 2 Experiments show that a viscous drop can deform into a prolate
(oblate) ellipsoid with the long axis aligned parallel (perpendicular) to the direction of the imposed
electric field.2–4 The flow circulation around the prolate drop is often opposite to that around the
oblate drop, depending on the mismatch in electric conductivity, permittivity, and viscosity between
the interior and exterior fluids. A brief and clear review of the droplet electrohydrodynamics (EHD)
can be found in Ref. 5.

Taylor’s spherical model1 explains how different combinations of electric conductivity, per-
mittivity, and fluid viscosity lead to either prolate or oblate shapes. For small to moderate electric
field strengths, the balance between the surface tension, electric, and hydrodynamic stresses results
in an equilibrium drop shape.6–8 Small-deformation analysis provides good agreement with exper-
iments for a slightly deformed viscous drop under a weak DC electric field.1, 9 When applied to
large drop deformations under a strong electric field, however, small-deformation theories1, 9 give
no quantitative agreement with experiments (see the Appendix).

Recently, Bentenitis and Krause10 extended the leaky dielectric model for large electro-
deformation of a non-charged viscous drop in a leaky dielectric fluid. Their large deformation
analysis assumes spheroidal shapes and gives good agreement with most experiments for the pro-
late drops. Zhang et al.11 refined the spheroidal model by projecting the stress balances onto the
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corresponding (unsteady) velocity components, which is also done in the variational analysis12 and
reduced model analyses.13, 14 They obtained good agreement with experiments on prolate drops, but
provided no comparison for the oblate drops in Ref. 11.

Under an even stronger electric field (beyond the critical strength), no steady equilibrium
drop shape can be found and the drop keeps elongating until the eventual break-up into smaller
droplets.15–17 Conical points may form at the end of the viscous drop at high capillary number,5 and
small droplets may detach from the tip as a result of the tip-streaming instability.18 The drop may
also undergo undulation and break into several droplets of comparable sizes. The large deformation
models10, 11 are inadequate to capture such extreme deformation, and numerical simulations have
been conducted to investigate large electro-deformation in the framework of the leaky dielectric
model.5, 8, 19–24

Tip-streaming has also been observed for a surfactant-covered drop in an extensional flow.25–27

Surfactants (surface-active agents) are often used to facilitate deformation and breakup of fluid
interface in many engineering applications,26, 28–30 and they are known to affect the stability of
a viscous drop through a combination of reduced surface tension and the immobilizing (surface
stiffening) effect of the Marangoni stress.29, 31–36

The electro-deformation of a surfactant-laden viscous drop has been investigated by Ha and
Yang37, 38 (experiments and small-deformation analysis) and later by Teigen and Munkejord39 (ax-
isymmetric numerical simulations). While Ha and Yang37, 38 concluded that surfactant enhances
deformation for a prolate drop, Teigen and Munkejord39 found that smaller deformation may be
caused by diffusing surfactant for a prolate drop with a circulation from the pole to the equator
(prolate B as categorized by Lac and Homsy5).

Two different modes of the drop breakup are observed in Ha and Yang’s experiments38 depending
on the surfactant coverage. When the interface is clean or contaminated by a very small amount
of surfactant, the drop bursts into several small droplets after forming bulbous ends. For a range
of small surfactant concentration, tip-streaming is a prevalent drop breakup mode. If the surfactant
concentration exceeds this range, the breakup mode goes back to the fragmentation with bulbous
end formation. This indicates that, although not pronounced in the small-deformation limit, non-
uniformity of the surfactant concentration is a decisive factor for the breakup mechanism of a prolate
viscous drop in a DC field.

It is not clear how the two drop breakup modes are related to surfactant effects.39, 40 To in-
vestigate the origin of the two modes of breakup, we need to capture the large deformation of the
surfactant-laden drop prior to breakup. In addition, a quantitative description of surfactant transport/
redistribution is essential to accurately elucidate the surfactant effects. For example, how does sur-
factant alter the stability of an equilibrium drop shape? How does surfactant coverage affect the
equilibrium drop deformation? How important is the Marangoni stress at different values of the
electric capillary number?

To answer these questions, in this work we study the electro-deformation of a surfactant-laden
viscous drop in the leaky dielectric EHD framework. We extend the approaches in Zhang et al.11 to
include the surfactant effects, and focus on how insoluble surfactant affects the existence of spheroidal
drop and its deformation at equilibrium. Furthermore, we seek quantification of surfactant effects
on a viscous drop under a DC electric field.

This paper is organized as follows. We formulate the problem in the leaky dielectric framework
at the beginning of Sec. II. In Sec. II A we discuss the small-deformation analysis and present the
equilibrium drop deformation at the second order. In Sec. II B we discuss the spheroidal model for
large deformation and derive the equilibrium surface tension and the governing equation for the
shape function. The validation of the spheroidal model without surfactant is given in the Appendix.
In Sec. III we investigate surfactant effects on several aspects of a leaky dielectric viscous drop. We
first examine how the existence of equilibrium spheroidal drop depends on various parameters in Sec.
III A. We present comparison against experiments and numerical simulations of surfactant-covered
drops in Sec. III B, where we further discuss the similarity and difference between prolate and oblate
surfactant-covered drops in a DC electric field. In Sec. III C we elucidate the surfactant effects in
terms of surface dilution and tip stretching, which can be quantified by the average surface tension.
We show that our spheroidal model can capture both mechanisms as in direct numerical simulations,
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FIG. 1. Deformation of a viscous drop covered with insoluble surfactant (bead-rod particles) under a DC electric field E0ẑ.
Starting from an initially spherical shape (dashed line), the drop can deform to either a prolate (labeled as ξ0) or an oblate
(labeled as λ0) spheroid at equilibrium. a and b are distances from the center to the pole and equator, respectively.

while small-deformation theory cannot capture these effects. Finally, in Sec. IV we draw conclusion
on our findings and discuss future research direction.

II. PROBLEM FORMULATION

We consider a viscous leaky dielectric drop immersed in another leaky dielectric fluid as shown
in Figure 1. Each fluid is characterized by the fluid viscosity μ, dielectric permittivity ε, and
conductivity σ with the subscript denoting interior (i) or exterior (e) fluid. In this work the subscript
“r” denotes the ratio between exterior and interior quantities: μr ≡ μe/μi, εr ≡ εe/εi, and σ r ≡ σ e/σ i.
Typical leaky dielectric fluids are very viscous (for example the castor and silicone oils used by Ha
and Yang38 are hundreds or thousands times more viscous than water), and drops are of mm size.
Hence the fluid flow in this system is in the creeping flow regime with negligible inertia, and the
flow velocity in both interior and exterior fluids is therefore governed by the incompressible Stokes
equations

μ j∇2u j = ∇ p j , ∇ · u j = 0, (1)

with j = e or j = i. The boundary conditions for the velocity are u = 0 in the far-field and u = dx
dt

on the drop surface, with x denoting the drop surface location.
The balance of stresses at the fluid interface gives

[[ τ · n ]] = γ (∇ · n) n − ∇sγ , (2)

where [[ f ]] ≡ fe − fi denotes the difference between exterior (e) and interior (i), n is the unit normal
vector on the drop surface, and ∇s ≡ (I − nn) · ∇ is the gradient projected on the drop surface. γ

is the surface tension that depends on the surfactant concentration �, and

τ ≡ −pI + μ
(
(∇u)T + ∇u

) + εEE − 1

2
ε (E · E) I = T + S,

where T = −pI + μ
(
(∇u)T + ∇u

)
is the hydrodynamic stress and S = εEE − 1

2
ε (E · E) I is the

Maxwell stress. The electric field is irrotational E = −∇φ, where φ is the electric potential that
satisfies the Laplace equation both inside (j = i) and outside (j = e)

∇2φ j = 0. (3)
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In the far-field E is the imposed external electric field along the axis of symmetry: −∇φe = E0ẑ.
At the fluid interface the tangential electric field is continuous, while there is a jump in the normal
electric field due to the balance of currents between the ohmic current and the rate of change of the
surface charge density q ≡ [[ −ε∇φ · n ]] :

[[ −∇φ · t ]] = 0, [[ σ∇φ · n ]] = dq

dt
= ∂q

∂t
+ ∇s · (usq) , (4)

where us ≡ (I − nn) · u is the tangential velocity on the surface.
The surfactant transport on the deforming drop surface is described by41, 42

∂�

∂t
+ ∇s · (us�) + κu · n� = Ds∇2

s �, (5)

where � is the surfactant concentration, κ is the mean curvature of the surface, and Ds is the surfactant
diffusivity. In this work we focus on the non-diffusing limit and neglect the surface diffusion in
Eq. (5). In our spheroidal model we use the Langmuir equation of state for surface tension of the
surfactant-laden fluid interface:

γ = γ0

(
1 + E ln

(
1 − �

�∞

))
, (6)

where γ 0 is the surface tension of a “clean” or surfactant-free drop, �∞ is the maximum packing
concentration, and the elasticity number E = RT�∞/γ 0 quantifies the sensitivity of surface tension
to changes in the surfactant concentration on the drop surface. 0.03 < E < 0.3 is reasonable for
low-molecular-weight surfactants43 and polymeric surfactants.44 For large E the Marangoni stress
alone cannot prevent the surface tension from going to zero45 when the surfactant concentration
is close to the critical micelle concentration �CMC, which happens during tip streaming27, 40, 43, 46

and thread formation.47–50 Equation (6) no longer holds as � → �CMC, and physics dictates that
the surface tension plateaus to a minimum value for � ≥ �CMC. A modified Langmuir equa-

tion of state has been adopted in Refs. 40 and 50: γ = max (γ0

(
1 + E ln

(
1 − �

�∞

))
, γmin).

Value of γ min varies for different combinations of fluid and surfactant. In this work we as-
sume that γ min = 0.1γ 0 as this value has been reported under equilibrium conditions by
DeBruijn.25 In the following analyses and results the equilibrium surface tension γ eq ≡ γ 0(1 + E
ln(1 − �eq/�∞)) = γ 0(1 + E ln (1 − χ )) is used to scale surface tension and compute the electric
capillary number, noting that χ is the normalized equilibrium surfactant coverage.

In the leaky dielectric hydrodynamics, tc, j ≡ εj/σ j is an electric charging time, tγ , j ≡ μjr0/γ 0 is
a characteristic hydrodynamic time scale for a deformed drop to relax to its equilibrium shape, and
often tc, j � tγ , j. A characteristic time scale in EHD is given by the inverse shear rate corresponding
to the electric shear traction tE H D ≡ μe/εe E2

0 . In this work we focus on situations where tc � tγ
< tEHD. In the presence of surfactant we use the reduced surface tension γ eq to estimate the time

tγ . The ratio of the two time scales gives the electric capillary number CaE ≡ tγ,e/tE H D = E2
0r0εe

γeq
,

which is also the ratio between characteristic electric stresses and surface tension.

A. Second-order small-deformation analysis for a spherical drop

For small drop deformations, we seek a leading-order perturbative solution around a sphere in
the form

E = E∞ + E(0) + · · · , u = u(0) + u(1)( f, g) + · · · . (7)

The leading-order velocity field, u(0), describes the flow about a spherical drop generated by the
imposed electric field. This flow drives drop deformation and surfactant redistribution characterized
by f and g, respectively. For the electric field applied in the z-direction, the shape function rs and
surfactant distribution are expressed as

rs = r0
(
1 + f20

(− 1
3 + cos2 θ

))
, � = �eq

(
1 + g20

(− 1
3 + cos2 θ

))
, (8)
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where f20 and g20 are the leading-order coefficients of scalar spherical harmonics (corresponding to
j = 2 and m = 0 mode). The term u(1) describes the flow driven by capillary and Marangoni stresses,
i.e., relaxation of the deformed drop and surfactant back to the equilibrium spherical shape/uniform
distribution.

In the small-deformation analysis both the drop deformation and the deviation of � from the
uniform distribution are assumed to be small,51 therefore we use the linear equation of state for the
surface tension

γ (�) = 1 + Ẽ (1 − �) , (9)

where Ẽ ≡ (γ0 − γeq )/γeq . The relation between the capillary number based on the clean drop
surface tension and the capillary number based on the equilibrium surface tension of the surfactant-
covered drop is Ca0 = CaE

(
1 + Ẽ

)−1
, and the Marangoni number Ma = ẼCa−1

E .
The solution for E(0) and u(0) can be found in Refs. 52 and 53, and for u(1) in Refs. 51 and 53.

Combining these solutions we obtain the evolution equations for the shape and surfactant:

d f20

dt
= c202 + Ca−1

0 Cc(μr ) f20 + Ma
[
Cm f (μr ) f20 + Cmg(μr )g20

]
, (10)

dg20

dt
= c222 + Ca−1

0 Mc(μr ) f20 + Ma
[
Mm f (μr ) f20 + Mmg(μr )g20

]
. (11)

In the absence of surfactant, Ma = 0, the evolution equations reduce to the Taylor solution for a
clean drop.

In Eqs. (10) and (11), the inhomogeneous term represents the distortion of the drop shape and
surfactant distribution by the straining EHD flow:

c202 = 9(5 + (6 + 5/σr )/σr + (5 + (9 + 5/σr )/σr − 19/εr )/μr − 16/εr )

(19/μr + 16)(2/μr + 3)(2 + 1/σr )2
, (12)

c222 = 27((3 + (13 + 3/σr )/σr − 19/εr )/μr + 2(1 + (6 + /σr )/σr − 8/εr )

(19/μr + 16)(2/μr + 3)(2 + 1/σr )2
. (13)

The terms proportional to Ca−1
0 describe relaxation of the drop shape and surfactant distribution

driven by capillary (curvature) stresses:

Cc(μr ) = − 40μr (1 + μr )

(19 + 16μr )(2 + 3μr )
, Mc(μr ) = − 24μr (3 + 2μr )

(19 + 16μr )(2 + 3μr )
. (14)

The terms proportional to Ma describe relaxation of the drop shape and surfactant distribution driven
by Marangoni stresses (surface tension gradients):

Cm f (μr ) = 12μr (3 + 2μr )

(19 + 16μr )(2 + 3μr )
, Cmg(μr ) = 2μr (1 + 4μr )

(19 + 16μr )(2 + 3μr )
, (15)

Mm f (μr ) = 6μr (26 + 24μr )

(19 + 16μr )(2 + 3μr )
, Mmg(μr ) = − μr (7 + 8μr )

(19 + 16μr )(2 + 3μr )
. (16)

From Eqs. (10) and (11) we determine the discriminating function

DL = 9
(
(1 + 1/σr )2 − 4/εr

)
16(2 + 1/σr )2

, (17)

and DL = 0 gives the boundary between prolate and oblate shapes on the (σ r, εr)-plane (see
Sec. III A). Continuing on to the second order terms (which we omit here) we obtain the equilibrium
drop deformation Deq ≡ a−b

a+b (a and b are defined in Figure 1) as

Deq = DLCaE

[
1 + 1/σr (1/σr (139/σr + 264) − 696/εr + 111) + 336/εr − 154

80(1/σr + 2)3
CaE

]
. (18)
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We remark that in the small deformation theory the equilibrium drop deformation Deq does not
depend on μr, and its dependence on Ẽ is implicit through the equilibrium surface tension in the
electric capillary number CaE.

B. Large-deformation analysis for a spheroidal drop

For large spheroidal deformations, we seek a leading-order truncated solution in spheroidal
coordinates. For a prolate spheroidal viscous drop we use the prolate spheroidal coordinates (ξ , η)
that are related to the cylindrical coordinates (r, z) as

z = cξη, r =
√

x2 + y2 = c
√

(ξ 2 − 1)(1 − η2), (19)

where c ≡ √
a2 − b2 is the semi-focal length. Surfaces of constant ξ ∈ [1, ∞) are spheroids while

surfaces of constant η ∈ [−1, 1] are hyperboloids. The drop surface is uniquely specified by
ξ 0( = a/c) for a fixed drop volume. a and b are distances from center to pole and equator, respectively

(see Figure 1), and can be expressed in terms of ξ 0 as a(t) = r0/
3

√
1 − ξ−2

0 and b(t) = r0
6

√
1 − ξ−2

0 .
In the following, hξ , hη, and hζ denote the metric coefficients in the prolate spheroidal coordinates.

The axisymmetric two-dimensional incompressible flow is calculated from the stream function
ψ as u j = − 1

hξ hζ

∂ψ j

∂ξ
and v j = 1

hηhζ

∂ψ j

∂η
, where u and v are components of fluid velocity along eη

and eξ , respectively. The stream function satisfies the equation

(E2)2ψ j = 0, with E2 = 1

c2(ξ 2 − η2)

[(
ξ 2 − 1

) ∂2

∂ξ 2
+ (

1 − η2
) ∂2

∂η2

]
. (20)

The normal component of the interfacial velocity is

v(ξ0) = dx
dt

· eξ = hξ

dξ0

dt
+ dx

dc
· eξ

dc

dt
= r0(1 − ξ−2

0 )−5/6

3ξ 2
0

(1 − 3η2)√
ξ 2

0 − η2

dξ0

dt
, (21)

while the tangential velocity has to be determined through the boundary conditions. The tangential
and normal stress balances are given by

[[ Tξη ]] + [[ Sξη ]] + ∇sγ = [[ Tξη ]] + [[ Sξη ]] + 1

hη

∂γ

∂η
= 0, (22)

[[ Tξξ ]] + [[ Sξξ ]] − γ (∇ · n) = 0, (23)

where

Tξξ = 2μ

(
∂v

hξ ∂ξ
+ u

hξ hη

∂hξ

∂η

)
, Tξη = μ

(
∂(u/hη)

∂ξ

hη

hξ

+ ∂(v/hξ )

∂η

hξ

hη

)
, (24)

Sξξ = ε

2

(
E2

ξ − E2
η

)
, Sξη = εEξ Eη, (25)

with Eξ ≡ − 1
hξ

∂φ

∂ξ
and Eη ≡ − 1

hη

∂φ

∂η
the normal and tangential electric fields, respectively. The

electric potential φ is obtained by solving Eq. (3) for both φi and φe with boundary conditions on
the interface:11

φe = E0r0

(
− c

r0
ξ0 + α(t)Q1(ξ0)

)
η, φi = E0r0β(t)ξ0η, (26)

with Q1(ξ 0) the first-degree Legendre polynomial of the second kind. The coefficients α and β are
determined from Eq. (4). In this work we assume that the charging process on the drop surface is
very fast (tc � tEHD) and neglect convection of surface charge:54 [[ σ∇φ ]] = σe

∂φe

∂ξ
− σi

∂φi

∂ξ
= 0 at ξ

= ξ 0. With this simplification, we obtain

α(t) = cξ0 (σr − 1)

ξ0σr Q′
1 − Q1

, β(t) = cσr
(
Q1 − ξ0 Q′

1

)
ξ0σr Q′

1 − Q1
, (27)

for the prolate drop.
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Using the method of semi-decomposition we express the general solution to Eq. (20) as

ψ = g0(ξ )G0(η) + g1(ξ )G1(η) +
∞∑

n=2

(gn(ξ )Gn(η) + hn(ξ )Hn(η)) , (28)

where Gn and Hn are Gegenbauer functions of the first and second kind, respectively. gn and hn

are linear combinations of Gn and Hn. We refer interested readers to Dassios et al.55 for detailed
expressions of Gn, Hn, gn, and hn. Following Bentenitis and Krause10 and Zhang et al.,11 we seek a
truncated solution

ψe = [
A1

3 H1(ξ ) + A3
3 H3(ξ )

]
G3(η), (29)

ψi = [
B3

3 G3(ξ ) + B5
3 G5(ξ )

]
G3(η), (30)

where coefficients A1
3, A3

3, B3
3 , and B3

5 (functions of ξ 0, α, and β) are determined from the boundary
conditions.10 At this order of truncation, the velocity continuity on the drop surface gives two
equations. The other two equations have to be obtained from the stress balances in Eqs. (22) and (23),
which can be projected onto the corresponding velocities (as done in the variational analysis12) to
close the system:11, 14 ∫

ξ=ξ0(t)
u

[
[[ Tξη ]] + [[ Sξη ]] + 1

hη

∂γ

∂η

]
ds = 0, (31)

∫
ξ=ξ0(t)

v
[
[[ Tξξ ]] + [[ Sξξ ]] − γ (∇ · n)

]
ds = 0, (32)

where the integrals are on the drop surface ξ = ξ 0(t). For a clean drop γ is constant, and the transient
dynamics toward a unique equilibrium is well captured by the spheroidal model.11 In the presence of
non-diffusing surfactant, integrating the Marangoni stress in Eq. (31) leads to different equilibrium
solutions as we vary the initial surfactant concentration distribution.

In our spheroidal model we take a different approach based on the fact that the fluid flow
(and hence the viscous stress) vanishes at equilibrium for an axisymmetric drop covered with non-
diffusing surfactant. Consequently, the tangential electric stress is balanced solely by the Marangoni
stress

[[ Sξη ]] + 1

hη

dγ

dη
= 0. (33)

To close the system we project the normal stress balance to the normal velocity∫
ξ=ξ0(t)

v
[
[[ Sξξ ]] − γ (∇ · n)

]
ds = 0. (34)

Integrating Eq. (33) and scaling the electric potential by E0r0, distance by r0, and surface tension by
γ eq, we obtain the equilibrium (dimensionless) tension profile

γ = CaE f (ξ0)
√

ξ 2
0 − η2 + A, (35)

f (ξ0) =
√

ξ 2
0 − 1

c

[
(−c + αQ′

1)(−cξ0 + αQ1) − β2ξ0

εr

]
, (36)

where the integration constant A is determined from the conservation of total amount of surfactant.
For the Langmuir equation of state (Eq. (6))

A = γ0

γeq

⎡
⎢⎣1 − E − ln

⎛
⎜⎝

∫ 1
−1

√
ξ 2

0 − η2dη − 2χ

c
√

ξ 2
0 −1∫ 1

−1

√
ξ 2

0 − η2e
γeq
γ0

CaE f (ξ0)
√

ξ 2
0 −η2

dη

⎞
⎟⎠

⎤
⎥⎦ . (37)
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Using Eq. (37) and the equilibrium surface tension from Eq. (35), the corresponding drop shape
is obtained by solving for ξ that satisfies Eq. (34), which upon substituting v, Sξξ , ∇ · n, and γ into
the integral and rearranging terms, is recast as

CaE

cξ0

[
(−c + αQ′

1)2 +
(

−c + α
Q1

ξ0

)2

− 2β2

]
g(ξ0) =

∫ 1

−1

(1 − 3η2)(2ξ 2
0 − 1 − η2)γ√

ξ 2
0 − 1(ξ 2

0 − η2)3/2
dη, (38)

g(ξ0) = ξ 2
0

2

∫ 1

−1

(1 − 3η2)(η2 − 1)

ξ 2
0 − η2

dη, (39)

with α and β given in Eq. (27). For a given CaE and (σ r, εr), a solution ξ 0 of Eq. (38) is admissible
if the corresponding tension and surfactant profiles are physical, i.e., tension is positive everywhere
and the surfactant concentration never drops below zero.

For an oblate drop the derivation follows the above formulation with some modifications: The
oblate spheroidal coordinates (λ, η) are similarly expressed in the cylindrical coordinates (r, z) as
z = c̄λη,r = c̄

√
(λ2 + 1)(1 − η2), with c̄ ≡ √

b2 − a2 for the oblate drop. Surfaces of constant λ ∈
[0, ∞) are spheroids while surfaces of constant η ∈ [−1, 1] are hyperboloids. The oblate spheroidal
coordinates can be transformed from the prolate spheroidal coordinates by substituting55 ξ → ıλ
and c → −ı c̄ with ı = √−1. Similar transformation is also made in the derivation of the governing
equations for the oblate case. For example, Eqs. (27) take the form

α(t) = cλ0 (σr − 1)

λ0σr Q′
1 − Q1

, β(t) = −ı
cσr

(
Q1 − λ0 Q′

1

)
λ0σr Q′

1 − Q1
, (40)

for the oblate drop. The stream function satisfies Eq. (20) with

E2 = 1

c̄2(λ2 + η2)

[(
λ2 + 1

) ∂2

∂λ2
+ (

1 − η2
) ∂2

∂η2

]
. (41)

III. RESULTS

For a clean viscous drop, the spheroidal model can capture the equilibrium deformation up to
Deq ≈ 0.2 for both prolate and oblate drops. In the Appendix we provide a detailed comparison
between experiments,6 numerical simulations,5 and our implementation of the spheroidal model
from Ref. 11 for both prolate and oblate clean drops. Consequently, we will focus on equilibrium
drop deformation |Deq| ≤ 0.2 in the following results and discussion. In addition, we fix the
range of elasticity number 0.03 ≤ E ≤ 0.3 (for a detailed discussion on the realistic ranges of E see
Refs. 40 and 43). In the absence of surfactant, there are two prolate shapes: Prolate A with circulation
from the equator to the pole, and prolate B with circulation from the pole to the equator (the same
as in the oblate drop). As non-diffusing surfactant completely suppresses fluid flow at equilibrium
(Figure 11), there is no distinction (in terms of flow around the drop) between the two prolate modes.
The complete suppression of flow due to the Marangoni stress also implies that the equilibrium drop
deformation does not depend on viscosity mismatch.

A. Existence of spheroidal equilibrium

Taylor’s spherical model for a clean viscous drop in a DC electric field1 gives the boundary
(dashed line in Figure 2(a) with μr = 1) between prolate and oblate drops in the (σ r, εr)-plane. A
prolate A drop is found for εr > σ r (above the dashed-dotted line), while a prolate B drop is found
for εr < σ r. More details on a clean viscous drop under a DC field can be found in Lac and Homsy.5

For a viscous drop covered with non-diffusing surfactant in a DC electric field, our second-
order small-deformation predicts a spherical shape when DL = 0, which gives the solid lines in
Figure 2(a). We cannot derive such a discriminating condition analytically in our spheroidal model,
instead we numerically check the spheroidicity of the equilibrium shape around DL = 0 and we
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FIG. 2. Shape and equilibrium boundaries on the (σ r, εr)-diagram. (a) Symbols denote that a spheroidal equilibrium can be
found at those points with (E, χ ) = (0.1, 0.1), CaE = 0.05, 0.1, and 0.2 (see legend). Solid line is the boundary between
prolate and oblate drops from our small-deformation theory. (b) Boundaries for spheroidal equilibrium for CaE = 0.2 with
different values of E and χ (see legend). No spheroidal equilibrium is found below the boundary.

verify the transition between prolate and oblate across DL = 0 boundary. In addition, our spheroidal
model can provide the existence of admissible equilibrium spheroidal shapes in the (σ r, εr)-plane.
Using the Langmuir equation of state, we calculate the equilibrium surface tension and drop shape
from Eqs. (35) and (38) for a given set of (σ r, εr). The existence of an equilibrium spheroidal drop is
established if both the surface tension and surfactant distribution are physical: γ > 0 from Eq. (35)
and 0 ≤ χ� < 1 from the equation of state.

Figure 2(a) shows the existence of equilibrium for a spheroidal drop with (E, χ ) = (0.1, 0.1)
and three values of CaE denoted by three types of symbols (see legend). Overall we observe that
almost all (except one) equilibrium spheroidal solutions are prolate for (E, χ ) = (0.1, 0.1), and the
region of existence for spheroidal equilibrium gets smaller as CaE increases. Figure 2(b) shows the
boundaries for the existence of spheroidal equilibrium at CaE = 0.2 for four combinations of E and
χ . For points on the boundaries, the value of εr is the lower bound for a spheroidal equilibrium at
that value of σ r: No equilibrium can be found below this point. The lack of existence of a spheroidal
equilibrium implies that the spheroidal shape is not stable for these parameters. It is possible that
non-spheroidal axisymmetric equilibrium drop shape would be stable as in the case of clean drop.5

We find a larger region of spheroidal equilibrium for larger χ and/or larger E.

B. Comparison against experiments and numerical simulations

Ha and Yang37, 38 used soluble surfactant to investigate the electro-deformation of a surfactant-
covered viscous drop under a DC electric field. The normalized surfactant coverage χ on the drop
surface can be computed from the soluble surfactant concentration C∞ as χ = C∞

C∞+δ
if we assume

that (1) surfactant exchange between the bulk and the drop surface is in equilibrium and (2) the soluble
surfactant concentration is homogeneous and remains constant. The parameter δ is an equilibrium
coefficient related to the adsorption/desorption rate coefficients.26 We can estimate E and δ by fitting
the surface tension isotherm (Figure 9 of Ha and Yang38) to the formula

γC = γ0 + RT �∞ ln

(
1 − C∞

C∞ + δ

)
, (42)

where γ C is the surface tension in the presence of soluble surfactant. We find that (1) for experiments
1–6, E ≈ 0.06, δ ≈ 6.46 × 10−7M, and 0.13 < χ < 0.99, (2) for experiments 7–12, E ≈ 0.08, δ

≈ 6.00 × 10−7M, and 0.14 < χ < 0.99, (3) for experiments 13–17, E ≈ 0.04, δ ≈ 7.74 × 10−8M,
and 0.5 < χ < 0.99, and (4) for experiments 18–21, E ≈ 0.04, δ ≈ 4.0 × 10−5M, and 0.65 < χ

< 0.97. Due to limited data points for experiments 18–21 (three points for fitting in Figure 9 of
Ref. 38), the error of these estimates is quite large. There are no data for experiments 22–27 where
the interior/exterior combination is silicone oil/castor oil, which is opposite to experiments 18–21.

Downloaded 20 Sep 2013 to 128.235.7.120. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



092106-10 Nganguia et al. Phys. Fluids 25, 092106 (2013)

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

Ca
E

D
eq

 

 

Experiment 6
Experiment 8
Spheroidal model for experiment 6
Spheroidal model for experiment 8
Small deformation

(a)

0 0.05 0.1 0.15
−0.1

−0.08

−0.06

−0.04

−0.02

0

Ca
E

D
eq

 

 

Experiment 25
Spheroidal model
Small deformation

0 0.5

−0.1

−0.05

0

(b)

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

Ca
E

D
eq

 

 

Experiment 21
Spheroidal model
Small deformation

(c)

FIG. 3. Equilibrium deformation of a surfactant-laden drop from experiments38 (symbols), second-order small-deformation
results (dashed-dotted lines), and spheroidal results (solid lines). (a) Comparison for experiments 6 and 8 where (εr, σ r, μr)
= (0.0355, 10−6, 103). (E, χ ) = (0.06, 0.99) for experiment 6, and (E, χ ) = (0.08, 0.999) for experiment 8. (b) Comparison
for experiment 25 where (εr, σ r, μr) = (1.3, 10, 15.38). (E, χ ) = (0.04, 0.96) is used for the spheroidal model. In the inset
we scale the capillary number from the experiments by 2.7, and find agreement with our modeling results. (c) Comparison
for experiments 18–21 where (εr, σ r, μr) = (0.73, 0.1, 12.5) and (E, χ ) = (0.04, 0.96).
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FIG. 4. Comparison of the equilibrium drop deformation computed numerically39 (see legend), or analytically from our
second-order small-deformation (dashed-dotted lines), and spheroidal theories (see legend). (a) Case A in Ref. 39 where (εr,
σ r, μr) = (1, 0.33, 1). (b) Case B in Ref. 39 where (εr, σ r, μr) = (0.29, 0.33, 1). (c) Case C in Ref. 39 where (εr, σ r, μr)
= (0.5, 1, 1) .
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We calculate the equilibrium drop deformation as a function of electric capillary number with
the above estimates for (E, δ) and χ at a given C∞. Figure 3 shows the comparison of Deq versus
CaE (or Weber number in Ha and Yang38) between experiments (symbols), second-order small-
deformation (dashed-dotted line) and spheroidal model (solid line). Panel (a) is the comparison for
a prolate drop (experiments 6 and 8 from Figure 4 of Ref. 38), and panel (b) is the comparison for
an oblate drop (experiment 25 from Figure 6 of Ref. 38). We use experiment 25 to represent the
data set of experiments 22–25. Because we cannot find any data to estimate (E, δ) for experiments
22–25, we use the same value of (E, δ) from experiment 21 (panel (c)), which is representative of
experiments 18–21 (see Figure 5 of Ref. 38).

The equilibrium drop deformation from the small-deformation analysis is independent of (E,
χ ), and agrees with the spheroidal model and the experiments for CaE ≤ 0.1. The spheroidal model
results, on the other hand, depend on (E, χ ) and agree well with the experiments for large CaE.
From the prolate comparison in Figures 3(a) and 3(c), we conclude that the small-deformation
results are reliable for Deq up to 0.1, while the spheroidal model agrees with the experimental data
up to Deq ≈ 0.2. For the oblate deformation in Figure 3(b), small-deformation results agree well
with spheroidal results, yet both are very different from the experimental data. Interestingly we
find excellent agreement as shown in the inset of Figure 3(b) when we multiply the experimental
capillary number by 2.7.

Teigen and Munkejord39 numerically investigated the deformation of a viscous drop covered
with diffusing insoluble surfactant with a small Peclet number (10). They studied three special cases:
a prolate A drop, a prolate B drop, and an oblate drop. Their axisymmetric simulation results showed
that the fluid flow at equilibrium is not completely suppressed by the diffusing surfactant. They also
reported that surfactant increases the equilibrium drop deformation for prolate A and oblate drops,
while for prolate B the deformation is reduced by surfactant.

Figure 4 shows the comparison of Deq for these three cases. For small CaE, we note that
the spheroidal results agree with both the simulation results39 and the small-deformation results
in all three cases. This finding enhances the credibility of our oblate results in Figure 3(b), and
implies that the oblate experimental data (experiments 22–25 and 27 from Figures 6 and 7 in
Ref. 38) may be erroneous. Furthermore, we find that surfactant indeed increases |Deq| for small
CaE. For large CaE, close inspection in Figure 4 shows a non-monotonic dependence on the sur-
factant coverage. We will explain such behavior in terms of surface dilution and tip stretching in
Sec. III C.

Figure 5 shows the distribution of surfactant concentration and Marangoni stress and Figure 6
shows electric stresses and surface charge distribution for the parameters in Figure 4. Comparing
Figure 5(a) with Figures 9 and 10 in Ref. 39 (arc length s = 3 in their results corresponds to η

= 0), we observe similar surfactant concentration and Marangoni stress distributions, even though
our Marangoni stress is quite insensitive to χ . The electric stresses and induced surface charge in
Figure 6 are also insensitive to χ . We further note that, even though the non-diffusing surfactant
completely suppresses the fluid flow, our spheroidal results for the prolate B parameters (Case B)
are more similar to results for the oblate parameters (Case C) in terms of distributions of Marangoni
stress, tangential electric stress and the induced surface charge.
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FIG. 5. Distribution of surfactant concentration χ� and Marangoni stress for Figure 4. (a) Case A in Ref. 39 with
CaE = 0.46. (b) Case B in Ref. 39 with CaE = 1.6. (c) Case C in Ref. 39 with CaE = 0.9.
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FIG. 6. Distribution of normal electric stress Sξξ , tangential electric stress Sξη , and surface charge q for Figure 4. (a) Case
A in Ref. 39 with CaE = 0.46. (b) Case B in Ref. 39 with CaE = 1.6. (c) Case C in Ref. 39 with CaE = 0.9.

C. Surface dilution versus tip stretching

A measure to quantify the surfactant effect is the average surface tension defined as40

γavg ≡
∫
ξ=ξ0(t) γ ds∫
ξ=ξ0(t) ds

. (43)

At high surfactant coverage, drop deformation dilutes the surfactant concentration and increases
the average surface tension γ avg > 1, leading to smaller drop deformation than the uniform tension
(clean drop) case at a given CaE. On the other hand, if the surfactant coverage is small, larger
surfactant concentration gradient is easily realized when surfactant accumulates at the drop tips,
leading to higher curvature by stretching out to the exterior (and hence larger drop deformation).40

The latter mechanism is called tip stretching for γ avg < 1, while the former mechanism is called
surface dilution for γ avg > 1.

Adding more surfactant in the tip-stretching dominant regime leads to larger drop
deformation.40, 43 Another signature of tip stretching is the large surfactant concentration gradi-
ent, and hence the Marangoni stress. However, when surface dilution takes over, more surfactant
leads to less drop deformation and smaller surfactant concentration gradient (Marangoni stress) is
expected.40

Figure 7 shows the average surface tension for the three cases in Figure 4. As the surfactant
coverage increases we see that the dominant mechanism transitions from tip stretching to surface
dilution in all three cases. Significant decrease in drop deformation with increasing surfactant
coverage is observed for both prolate A (Case A, Figure 4(a)) and oblate (Case C, Figure 4(c)), while
very little change in Deq is found for prolate B.

To further illustrate that the average surface tension is a good indicator for the underlying physical
mechanisms involving surfactant, we compute the equilibrium drop shape using the same parameters
for Figure 19 in Lac and Homsy5 with different values of surfactant coverage χ . Figure 8(a) shows
Deq versus CaE at four values of surfactant coverage, and Figure 8(b) shows the corresponding
equilibrium surfactant concentration distribution (top) and Marangoni stress (bottom). We find that
surfactant-laden drop has larger Deq for 0 < χ ≤ 0.7. For χ = 0.9 the large surfactant coverage
leads to smaller Deq compared to the clean drop for CaE > 0.03. The Marangoni stress distribution
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FIG. 7. Average surface tension for the three cases in Ref. 39. Panels (a), (b), and (c) correspond to Cases A, B, and C,
respectively.

Downloaded 20 Sep 2013 to 128.235.7.120. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



092106-14 Nganguia et al. Phys. Fluids 25, 092106 (2013)

0 0.02 0.04 0.06 0.08 0.1
−0.2

−0.15

−0.1

−0.05

0

Ca
E

D
eq

 

 

Spheroidal model, χ=0.5, E=0.4
χ=0.7
χ=0.9
χ=0
Small deformation
Lac and Homsy (2007)

0.02 0.04

−0.08

−0.06

−0.04

−0.02

(a)

0.5

1

χΓ

−1 −0.5 0 0.5 1
−0.5

0

0.5

η

M
ar

an
go

ni
 s

tr
es

s

(b)

0 0.02 0.04 0.06 0.08 0.1
1

1.1

1.2

1.3

1.4

1.5

Ca
E

(c)

γ av
g

FIG. 8. Surfactant effects on drop deformation for (εr, σ r, μr) = (0.05, 0.5, 1), where an equilibrium oblate clean drop is
found for all values of CaE.5 (a) Deq versus CaE at different χ . (b) Surfactant concentration χ� (top) and Marangoni stress
(bottom). (c) γ avg versus CaE.

(panel (b)) is almost identical for all surfactant coverages, while the average surface tension in panel
(c) clearly indicates that surface dilution is much more dominant at χ = 0.9, and thus smaller drop
deformation for χ = 0.9 in panel (a). Similar behavior is also reported for the surfactant effects on the
deformation of a viscous drop in an extensional flow.40, 43 Such non-monotonic surfactant dependence
of the equilibrium drop deformation is not captured by the second-order small-deformation theory.

IV. SUMMARY

In this work we investigate theoretically the effect of surfactant on equilibrium drop deformation.
Small deviations from sphericity are analyzed by a second-order small-deformation theory. Large
deformations are described by a spheroidal model based on Ref. 11. In contrast to the approach
in Ref. 11, the tangential electric stress is balanced by the Marangoni stress at equilibrium in the
presence of non-diffusing surfactant. As a result the equilibrium surface tension is obtained from
the tangential electric stress, and we numerically solve for the corresponding equilibrium shape
for a given equation of state. We determine the range of validity of both spheroidal model and the
small-deformation model by comparing against experiments38 and numerical simulations,39 using
exactly the same values for physical parameters. For small CaE we always find perfect agreement
between small-deformation results and spheroidal results. Between the two models and experiments,
we find that our spheroidal model gives better agreement with the experiments over a wider range of
CaE. Comparison with numerical simulations for Case A in Ref. 39 shows quantitative agreement
in the distribution of surfactant concentration and Marangoni stress.

As non-diffusing surfactant suppresses the fluid flow by immobilizing the interface via the
Marangoni stress at equilibrium, adding non-diffusing surfactant eliminates the distinction between
prolate A and prolate B drops in terms of fluid flow around the viscous drop. However we still
observe different features of tangential electric stress and surface charge distribution between these
two parameter regimes in the presence of surfactant: For parameters in the prolate B clean drop
regime, the Marangoni stress, tangential electric stress Sξη and surface charge q are similar to those
in the oblate clean drop regime. To our knowledge this has not been reported in the literature.

Furthermore, our spheroidal model captures the surfactant effects at large electric capillary
number. In the tip stretching regime the drop deformation is increased by a small amount of
surfactant while in the surface dilution regime the drop deformation is decreased by increasing
surfactant coverage. We find more pronounced surface dilution effect at large CaE. We also investigate
how the existence of an equilibrium spheroidal shape depends on the electric capillary number,
elasticity number, and the surfactant coverage. At low surfactant coverage we find equilibrium
mostly for prolate shape, and increasing the electric capillary number diminishes the existence
of equilibrium shape. At high surfactant coverage surface dilution takes over and stabilizes the
equilibrium spheroidal drop at high CaE.

It will be interesting to see how surfactant diffusion and solubility may modify equilibrium
results reported in this work. In our time-dependent calculations we find that, in some cases, non-
diffusing surfactant cannot immobilize the drop surface to prevent the surfactant concentration from
reaching the maximum packing. In reality surfactant diffusion is a weak effect, and is unlikely to
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greatly change our conclusion on the spheroidal equilibrium. However, the lack of a spheroidal
equilibrium may be an indication that a non-spheroidal equilibrium shape is favored instead. We
are now using an axisymmetric numerical code to investigate how the surfactant distribution and
circulation may contribute to non-spheroidal drop deformation and different modes of drop breakup.

ACKNOWLEDGMENTS

H.N. and Y.N.Y. acknowledge partial support from NSF Grant Nos. DMS-1009105 and DMS-
1222550. P.M.V. acknowledges partial support from NSF Grant No. CBET-1132614. J.Z. and H.L.
acknowledge support from NSF Grant No. CBET-0747886.

APPENDIX: MODEL VALIDATION: CLEAN SPHEROIDAL DROP

The electro-deformation of a clean viscous drop under a DC electric field has been investi-
gated analytically,1, 9–11, 56 numerically,5, 21, 54 and experimentally.1, 6, 15, 57 In particular, large electro-
deformation has been modeled analytically in Bentenitis and Krause10 and Zhang et al.11 Their
theoretical results compare reasonably well with experimental data, though the agreement is better
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FIG. 9. Equilibrium deformation for a clean drop in a DC electric field: Comparison between the spheroidal model11

(solid line), Taylor’s spherical model1 (dashed line), and Ajayi’s second-order model9 (dashed-dotted line). (a) Symbols are
experimental results from Ref. 6 where (εr, σ r, μr) = (0.73, 0.1, 1.14) for the prolate drop (Deq > 0), (εr, σ r, μr) = (1.39,
6.67, 1.28) for the oblate drop (Deq < 0). (b) Symbols are numerical results from Ref. 5 where (εr, σ r, μr) = (0.02, 0.04, 1)
for the prolate drop (Deq > 0), and (εr, σ r, μr) = (0.5, 10, 1) for the oblate drop (Deq < 0).
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FIG. 10. ((a) and (b)) Comparison of the current model (solid line), Taylor’s spherical model1 (dashed line), and Ajayi’s
second order approximation9 (dashed-dotted line). Symbols are numerical results from Ref. 5. (εr, σ r, μr) = (25, 10, 1) for
panel (a) and (εr, σ r, μr) = (0.05, 0.5, 1) for panel (b). ((c) and (d)) Comparison of the tangential flow between an oblate
(εr, σ r, μr) = (1.37, 10, 1) and a prolate (εr, σ r, μr) = (0.73, 0.1, 1) drop at deformation |Deq| = 0.01.
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FIG. 11. Comparison of equilibrium drop shape and circulation for Case A in Ref. 39 where (εr, σ r, μr) = (1, 0.33, 1).
CaE=0.2 for panel (a) and CaE = 0.8 for panel (b). Clean drop with circulation is on the left of each panel. On the right the
drop is covered with χ = 0.7 and the circulation is completely suppressed by the non-diffusing surfactant.
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for the prolate cases than for the oblate cases in Ref. 10, and no results for the oblate case in
Ref. 11. As a validation Y.N.Y. and H.N. implemented their own spheroidal model for both pro-
late and oblate spheroidal shapes, and compared theoretical predictions against experimental and
numerical data for a clean viscous drop.

Figure 9 shows the dependence of equilibrium drop deformation on the electric capillary
number CaE predicted by three models. The theory is compared to experimental data (Figure 9(a))
and numerical simulation data (Figure 9(b)). Results from the present spheroidal model (solid
curve) agree with both experimental data and the numerical simulations for a wide range of electric
capillary number. In addition, we also note that the spheroidal model is almost exactly the same as
the numerical simulation results for deformation |Deq| up to 0.2. Taylor’s prediction gives reasonable
agreement for CaE up to 0.1 for most cases, while Ajayi’s second-order approximation is consistently
between Taylor’s results and the spheroidal results for all four cases in Figure 9.

Figure 10(a) shows two more examples of comparison of equilibrium drop deformation between
models and results from the boundary integral simulations of Lac and Homsy5 with parameters that
allow an equilibrium spheroidal drop for all values of the capillary number for both prolate (panel
(a)) and oblate (panel (b)) drops. For the prolate case we see that the spheroidal model is far more
superior than Taylor’s or Ajayi’s results, and good agreement is obtained for deformation up to
Deq ≈ 0.5. For the oblate case the spheroidal model gives the best agreement again, yet it begins
to deviate significantly from the axial-symmetric results around |Deq| > ≈0.3. Figures 10(c) and
10(d) show a comparison of tangential flow between prolate and oblate. At a given CaE the prolate
deformation is larger than the oblate deformation. For a given deformation, say Deq = 0.01 (circles in
Figure 10(c)), the fluid flow is larger for the prolate drop than for the oblate drop. Based on these find-
ings we conclude that an initially uniform surfactant concentration will be much more redistributed
in the oblate case before an equilibrium is reached and the Marangoni stress is established.

Finally, Figure 11 shows the comparison of equilibrium drop shape and circulation between
clean and surfactant-covered drops from our spheroidal model with χ = 0.7 and parameters for
Case A in Ref. 39. On the left is a clean drop with circulation, and on the right is a surfactant-
covered drop at equilibrium, depleted of any flow due to the immobilized fluid interface covered
with non-diffusing surfactant.
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