DYNAMICS OF THE PRIMARY CILIUM IN TIME-PERIODIC
FLOWS

Y.-N. YOUNG

ABSTRACT. In this work we investigate the dynamics of a non-motile primary
cilium in time-periodic flows. The primary cilium is modeled as an elastic
slender filament coupled to an elastic sheet with a local torque (mimicking
the sub-axonemal anchorage) at the filament-sheet junction. We examine how
a primary cilium responds to time-periodic flows depending on its axonemal
stiffness and the initial base angle. In particular we focus on the tension and
forces at the cilium base where ion channels are speculated to be “activated”
by fluid flow via cilium bending. We find larger tension and forces at the
ciliary base when the cilium is tilted. We further compare the cilium bending
dynamics between oscillating and pulsing flows, and investigate the effect of
oscillation frequency. From our simulation results we find that the cilium
bending is not affected much by flow frequency, and different dynamics is
found at different tilt angles.

1. INTRODUCTION

The primary cilium is a hair-like sensory organelle that protrudes from the apical
cell membrane into the extra-cellular space. Figure 1 is an illustration of the cilium
body connected to a basal body and the detailed sub-axonemal compartment. In
differentiated non-mitotic cells of adult tissues and organs, the primary cilium is
an isolated non-motile microtubule-based structure [3, 33]. The filamentary cilium
body, also called axoneme, is made of nine microtubule doublets (see the cross
section in figure 1) that are enclosed by the ciliary membrane which is a continuation
of the cell’s membrane. The axoneme is anchored and supported by the basal
body that consists of the modified mother and daughter centrioles (microtubule
organization centers, also known as MTOC). They are surrounded by distal and
sub-distal appendages connecting to the cytoskeletal network. The anchorage below
the basal body involves the basal feet that are associated with y-tubulin, and unique
filamentous structures known as striated rootlets [11]. Right above the basal body
is a transition zone (TZ), where the Y-connectors bridge the microtubule doublets
to the ciliary membrane (see figure 1). These Y-connectors distribute around the
TZ microtubules in a more or less symmetrical fashion. The TZ is associated with
various proteins and molecular motor transport. It is also found that the lipid
composition and the permeability of the TZ membrane are slightly different than
that of the ciliary membrane [17, 31].
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FiGURrRE 1. Top: Schematic diagram of primary cilium. Bottom:
Sub-axonemal compartment (left from [17] and right from [8]).

Primary cilia are different from motile cilia in several important aspects: Pri-
mary cilia lack (a) a central pair of microtubule doublet, (b) connections between
the outer doublets, and (c) other molecular machinery associated with motility. Un-
like motile cilia, there is only one primary cilium per cell. Motile cilia are expressed
on specialized cells while primary cilia are found on almost every cell type. Fur-
thermore, primary cilia basal bodies have multiple basal feet and striated rootlets
whereas motile cilia have only one of each [19].

In embryonic development primary cilia are known to rotate at certain frequen-
cies and are involved in establishment of the left-right axis and anterior-posterior
limb bud patterning [21, 12, 6] via sensing of the hedgehog and wnt families of
morphogens. In non-mitotic differentiated cells of adult tissues and organs, primary
cilia are non-motile, non-rotating, and only bend in response to the surrounding
extracellular flow. For example, in the kidney cells, Praetorious and Spring found a
dramatic extracellular calcium-dependent increase in intracellular calcium by bend-
ing primary cilia of the epithelial cells with fluid flow or micropipette manipulation.
They also verified that this response was lost with removal of primary cilia [28, 29].
It has been suggested that this response occurs via polycystin-2, a cationic channel
that localizes to the base of the cilium [1, 23]. This mechanism has also been found
in liver cholangiocytes [22]. In addition to its role in flow-sensing, the primary cil-
ium is involved in direct transmission of strains in cartilage extra cellular matrix.
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Mechanosensory function of primary cilia has been suggested in other cell types as
well, such as bone cells, human airway smooth muscle and epithelial cells.

Compared to motile cilia, a lot less theoretical modeling work on primary cilia
can be found in the literature: Schwartz et al. [35] developed a mathematical model
based on a small-deformation elastic beam formulation. They assumed a constant
velocity and drag profile along the cilium, which was found to break down under
high flow conditions. Resnick et al. [30] applied a similar formulation to study small
deflections of the primary cilium in a cylindrical Poiseuille flow. Liu et al. [20] used
a more refined model of the viscous flow around an array of cilia by numerically
solving Stokes equations. They assumed small rotation at the cilium base and
they compute the drag on cilium axoneme consistently from the Stokes equations.
Rydholm et al. [32] conducted direct numerical simulations of the bending of an
elastic filament connected to an elastic membrane. From their computations they
found the stress distribution along a filament bent under flow with the maximum
stress at the axoneme base. Unfortunately they did not provide any quantitative
comparison of cilium bending under flow between simulations and experiments.
Downs et al. [5] refined previous models [35, 20] by taking into account the large
rotation at the cilium base and the consistent hydrodynamic drag force. They also
used COMSOL CFD software to refine the viscous drag along a deflected elastic
filament. Their results illustrate the importance of the interaction between fluid
flow and the primary cilium axoneme for predicting the equilibrium profiles of
primary cilia under flow

Recently Young et al. [40] conducted a quantitative comparison of cilium bend-
ing under a viscous flow using the slender-body theory (SBT), where the ciliary
axoneme is modeled as an elastic slender filament in a steady Stokes flow. By
comparing the equilibrium profiles of primary cilia under flow between experiment
and modeling, the support from the basal body is found to behave like a nonlinear
spring. They incorporated the nonlinear spring for the basal support into their
slender-body modeling, and found good quantitative agreement in the bending dy-
namics of a primary cilium under flow between experiment and modeling. They
further showed that nonlinear basal anchorage can be modeled as an elastic shell
with a local torque at the junction with the axoneme [40].

The flow-induced bending of the primary cilia has been identified as an important
biophysical signal in mechanotransduction. In in vivo situations, the primary cilia
are often exposed to non-steady fluid flow. For example, bone tissue is immersed
in a dynamic (and oscillatory) fluid flow driven by the arterial pressure head. In
particular, it has been shown that different temporal dynamics of the fluid flows lead
to different degree of stimulations [18, 4]. Pulsatile flow at low frequencies is found
to be more effective (than steady flow and oscillating flow) in terms of stimulating
the highest population of cells to trigger the subsequent signaling [18]. It is not
clear if this finding is due to the mechanics of bending, structural response of the
axoneme, or how the ion channels respond to stimuli at different frequencies. In this
work we conduct a numerical study of the mechanics of cilium bending under both
oscillating and pulsatile time-periodic flows. We focus on the mechanical responses
of the axoneme to the dynamic flow with different axonemal bending stiffness, base
angle and temporal variation of the flow (pulsing versus oscillating).

This paper is organized as follows. We formulate the elastic filament-sheet model
in § 2. Based on the SBT we describe how an elastic filament can be supported by
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a local torque at the point where it connects with an elastic sheet. This model has
been successfully applied to understand the dynamics of a bending cilium under a
steady flow [40]. In § 3 we report numerical findings of the cilium bending dynamics
under different conditions. In § 4 we provide a short summary and discussion on
the future direction.

2. FORMULATION

For a primary cilium of length L = 1 um bending by a uniform fluid flow of speed
1 cm/s, the ratio of inertial to viscous forces (Reynolds number) is of the order of
10~* under typical physiological conditions. Hence in our formulation we ignore the
inertia effects and consider the Stokes flow regime for the interaction between the
primary cilium and the viscous fluid flow. The aspect ratio € = r/L of a primary
cilium is often in the range 1072 < € < 10~!, with r the axonemal radius as shown
in figure 2. Consequently the relevant physics is the bending of an anchored elastic
slender filament in Stokesian flows. In the following formulation we simplify the
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FIGURE 2. Illustration of the main features in the problem formu-
lation. The axoneme is an elastic filament of length L and radius
r (s* is the dimensional arc length), and it is coupled to the tran-
sition zone (modeled as an elastic sheet), along which [* is the
dimensional arc length.

coupling between the ciliary axoneme, plasma membrane and cytoskeleton network
and focus on an elastic filament coupled to an elastic sheet (transition zone in
figure 1 or region II in figure 2).

We adopt the elastic filament (or beam) formulation [10, 9, 26, 27] to model
the bending of ciliary axoneme under fluid flow, and use the hydrodynamic load
from the local drag model [37, 38, 39]. We denote the force distribution along
the cilium as F = F'(s)f + F"(s)n with s € [0,1] the arclength, and ¢ and 7
the unit tangent and normal vectors, respectively. The curvature s is assumed to
be linearly proportional to the moment M: M = Epk where Ep is the bending
rigidity of the axoneme. The external load P(s) = P! 4+ P™n is related to the
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force by % +P =F, +P = 0. The moment and the force density is related as

4M — M, = F". Denoting the filament centerline x = (z(s),y(s)) and the unit

tangent vector ¢ = (t1(s),t2(s)), the governing equations are

(2.1) rs = 1, ys =l
(22) tls = —Iitg, tQSZHtl,
(2.3) F!' = —kF™ - P
(2.4) F' = kF'—Pp",

F?’L
2.5 s = —.
(25) meo=

The local filament inextensibility (t1t1s + tatas = 0) is utilized in deriving equa-
tions 2.2-2.4. The dimensionless tangential force and the tension force o are related
as 0 = F* + k2. The external load P is computed from the local SBT as

n(0x/0t —U)
1+20)1+(1-20)%, &%,

where U is the fluid velocity at the location x in the absence of the elastic filament.
8muyL*B
Ep

(2.6) P = -

B = 1/(—In(e%e)) is the filament slenderness and 7 = is the effective
viscosity [37, 38, 39] with p the fluid viscosity and 4 the characteristic flow rate. n
is a ratio of viscous force to the bending force, and large 7 implies a more flexible
filament under a given viscous stress.

The time-dependent filament dynamics is approximated by first discretizing the
time derivative in equation 2.6 as
ox 1
ot 2At
and the equations for the force distribution at the k 4 1st step are

3xcF Tl gxck ikl k41
(2.8) Fhtl | phtl — phl _ " ( 24t _ kU(X )> -0
(14+28) I+ (1 —28)xb ! @ xbEH!

At the k + 1st time level we solve the following system of boundary-value equations

(2.7) (3xM — 4xF + xF71) + O(Ar?),

(2 9) ﬂfk+1 _ tllc-‘rl yk+1 — t]2f+1

N S b s 9

(2.10) thrl = R ALh L gkl kL
Fn,k+1

2.11 gL = ,

( ) S EB

together with the appropriate boundary conditions: At the free filament end (s =
1), the force-free and torque-free conditions give

(2.12) F'(1)=0, F*(1)=0, k(1) =0.

At the filament basal body (s = 0) z(0) = 0 and y(0) = 0.

For a clamped filament the base angle 8y (with respect to the shear flow direction)
is specified, while for a hinged filament the curvature at the base k(s = 0) is
specified. From experiments we know that it is neither for a primary cilium under
physiological conditions. In fact our previous work shows that there is a rotational
stiffness, and the rotational stiffness (originated from the basal anchorage) behaves
like a nonlinear rotational spring that can be explained by coupling the axoneme to
an elastic sheet [40]. Assuming axial-symmetry for the elastic sheet, we parametrize
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FIGURE 3. Panel (a): Coordinate system for the cylindrical elas-
tic sheet in the transition zone. Region I is the slender filament,
and region II is the cylindrical sheet where ¢ = /2 at the far
end is fixed. Panel (b): Profiles of the filament-sheet system in a
quiescent flow (n = 0) with different values for the torque h at the
base. Panel (¢): Flow magnitude for oscillating (solid) and pulsing
(dashed) flows.

the sheet surface as (r(l),z(1)) with I € [lo,l.] the arc-length along the elastic
sheet. 9 is the angle between the elastic shell normal vector n and the r-axis, see
figure 3(a). The governing equations for the cylindrically symmetric, inextensible
elastic sheet are [25, 34]

dr dz
2.1 &y 22— cos
(2.13) ¥ sin 1), ¥ cos 1,
dy cosy dv
1 @ _ _
(2.14) a- vt @@
dTl,, sin vy
2.15 Cm o, T, e
(2.15) A Lo
d .
(2.16) d—? = Tpobim + Tyt — sing
with v the moment of the cylindrical sheet, x,, = —%, K¢ = @, and Ty, =

Ty + Er (nfn — ni) FEr is the bending rigidity of the elastic sheet, and in the

following we assume that the ratio of the two rigidities A = Er/Ep < 1. At 1 =1
the elastic sheet is connected to the filament, and at [ = [, it is connected to the
surrounding membrane.

Equations 2.13-2.16 are coupled to equations 2.1-2.5 by the boundary conditions
at the junction where the filament base (s = 0) is connected to the sheet (I = lp).
Firstly, the unit tangent vector is continuous: The filament tangent vector at the
base is related to the angle ¢ as

t1(0) = —sintp(lo), 12(0) = costp(lo).

Secondly, the force distribution and the curvature are also continuous at the junc-
tion
Ls\’ Ls\’
Tu(lo) = F(0) ( 72 )+ Qo) = Fa(0) ( 72 )
Lp Lp
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where Lg and Lp are the characteristic lengths for the sheet and filament, respec-
tively.

As explained in the introduction, the TZ fibers connect the TZ microtubules to
the membrane. Here we assume that the mechanical support from the basal body
can be modeled as a localized finite torque (from the transition fibers) on the elastic
sheet at | = ly. The equation for the moment along the ciliary axoneme is then

dM
(2.17) E:F"(s)—f—hé(s),
where h is the magnitude of the torque at the base, and ¢ (s) is the Kronecker-delta
function at s = 0. Integrating over a small interval around s = 0, we find that the

localized torque (from the TZ fibers) induces a jump in the moment

+) = - +) — - h _ h
(2.18) M(o)_M(0)+h—m(o)_m(O)+EB—EB,
which in turn induces a curvature at the cilium base because we assume linear
elasticity for the axoneme.

At the junction the radius of the elastic sheet 7(lp) is assumed to be equal to
the axonemal radius 7, and the height of the transition membrane z(lg) ~ r(lp).
At the opposite end point, the elastic sheet is assumed to be connected to the cell
membrane in a flat angle such that ¢(l.) = 7/2. Equations 2.13-2.16 are rendered
dimensionless by scaling the length to the filament radius r; and force to Ep/ rj%.
Table T lists the relevant physical and dimensionless parameters in the model.

TABLE 1. Table I: List of physical and dimensionless parameters

Ep | bending rigidity of the ciliary axoneme | ~ 8.4 x 10" Nm? from [40]
Er | bending rigidity of the cylindrical sheet Epr =)MEp with A < 1
r axonemal radius ~ 100nm
L axonemal contour length lpm < L < 15um
0o cilium tilt angle see discussion below
7 effective viscosity 0.1 <75 < 102 from [40]
(ratio of viscous to elastic forces)
€ filament aspect ratio 1073 <e< 107!
153 filament slenderness 01<5<03
h local torque at the transition region see discussion below

We solve the coupled boundary-value differential equations using the bvp4c solver
in MATLAB. Figure 3(b) illustrates the cilium-transition zone profiles for different
values of h. In the absence of viscous load (from fluid flow), a non-zero torque is
needed to support the axoneme in the upright position because the unforced equi-
librium is a flat horizontal shell connected to a horizontal straight filament. As the
cilium basal body is mechanically connected to the ciliary membrane through the
connectors and micro-tubular distal appendages, it is physiologically feasible that
non-zero h corresponds to the support from the transitional fibers and other sub-
axonemal anchorage that are connected to the ciliary membrane. Numerically we
find that the value of h required to support the upright cilium axoneme is propor-
tional to A, and in dimensionless units h = —0.145 when A = 1/10 and h = —0.402
when A = 1/3.6. The tilt angle 6y is found to vary in experimental observations,
and three representative values of ¢ from [40] are used in the calculations.
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FIGURE 4. Top row: First period of oscillation of an elastic fila-
ment with 7 = 20 in an oscillating flow with periodicity T" = 10.
Bottom row: Second period from ¢ = 10 to ¢ = 20. Panel (a):
Solid lines are from ¢ = 0 (thick solid line) to ¢ = 5 toward the left
(solid arrow), with an interval of At = 0.4 between two adjacent
solid lines. Dashed lines are from ¢t = 5.4 (thick dashed line) to
t = 10 toward the right (dashed arrow). Panel (b): Corresponding
deformation of the elastic shell.

3. REsuLTS

We apply the coupled model to examine the dynamics of a primary cilium under
a periodic flow with either an oscillating magnitude (between —1 and 1) or a pulsing
magnitude (between 0 and 1, see figure 3(c)). Such periodic flows are motivated
by the physiological conditions in kidney and bone marrow, where primary cilia go
through repetitive bending under a periodic fluid flow (see references in [18, 4]). It
has also been observed that the basal anchorage may deteriorate due to repeated
bending over a long time [18, 4]. This observation illustrates the complex nature
of the support from the basal body and the surrounding cytoskeletal structures.
Additional motivation is from a recent study where an oscillatory flow chamber is
used to investigate how the cytoskeletal network responds to the mechanical load
transferred from the ciliary axoneme to the basal body when primary cilia are
exposed to a periodic hydrodynamic load [7].

For the following results the time-periodic flow is a 2D planar shear flow: U =
—A(t)(y,0). The flow magnitude A(t) = tanh(10sin(2Ft)) for an oscillating flow
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and A(t) = (1+tanh(10sin(2t)))/2 for a pulsing flow. For all the results presented
in this section the periodicity is fixed as T' = 10. The ratio between the two bending
rigidities is fixed as A = 0.2778, and we adjust the torque h to change the base angle
90 at t =0.

First in § 3.1 we focus on the dynamics of an upright primary cilium (6y(t = 0) =
0.57) with three different values of effective viscosity 7. For a fixed fluid viscosity
and flow rate, the effective viscosity n is small for a stiff axoneme while large 7
means the axoneme is flexible. In § 3.2-3.3 we study dynamics of filament bending
at different initial tilt fy, which is determined by the balance of moments at the
connection between the filament and the sheet in our model. By adjusting the
torque h with everything else fixed, the cilium orientation varies from upright to
tilted, as shown in figure 3(b). Finally we compare the bending dynamics between
oscillating and the pulsing planar shear flow in § 3.4.

time time

FIGURE 5. Panel (a): Location of the free end (s = 1). Panel (b):
Angles at the free end (top) and the fixed end (bottom). n = 0.1
for the dotted lines, n = 1 for the dash-dotted lines, = 10 for the
long dashed lines, and n = 20 for the solid lines.

3.1. Upright position: 0y(t = 0) = 0.57 in an oscillating flow. The top row
of figure 4 shows the dynamics of the filament (panel (a)) and the sheet (panel (b))
in the first period 0 < ¢ < 10. In both panels the thick solid lines are the initial
profiles at ¢ = 0. The solid lines are the profiles during the top half of the cycle,
and the dashed lines are for the bottom half of the cycle. The time interval between
two adjacent solid or two dashed curves is At = 0.4. As time progresses from 0 to
t = 5 (solid arrows), the filament bends toward the left and reaches the equilibrium
right before the flow changes direction at ¢ = 5, when the filament begins to bend
toward the right from the thick dashed lines (dashed arrows). In the simulations
the filament-sheet takes on a periodic response to the flow after the first period.
This periodic response is shown in the second row of figure 4, where the solid lines
start from the thick solid line, complete the top half of the cycle, and then the
dashed line start from the thick dashed line to complete the bottom half.

Figure 5 (a) shows the position of the filament free end as a function of time
for four values of 1. The corresponding angle at the free end and fixed end are
shown in figure 5(b). For small n (stiff filament) the filament moves very little
around the initial position, and the rigid filament rotates in sync with the oscillating
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FIGURE 6. Panel (a): Curvature x (top) and tension (bottom) at
the fixed end. Panel (b): Tangential force F* (top) and normal
force F™ (bottom). n = 0.1 for the dotted lines, n = 1 for the
dash-dotted lines, n = 10 for the long dashed lines, and n = 20 for
the solid lines.

flow. For large 7 (flexible filament) both the filament deformation and rotation are
large, and the response to the oscillating flow is not in sync. Figure 6(a) shows
the corresponding variation of filament curvature (top panel) and filament tension
(bottom panel) at the fixed end. Figure 6(b) shows the corresponding tangent force
F' (top) and normal force F™ (bottom) at the fixed end.

3.2. Tilted position: 6y(t = 0) = 0.377 in an oscillating flow. We repeat the
calculations for a filament with 6y(t = 0) = 0.377 (thick solid line in figure 7(a)).
The first period of oscillation is shown in the first row of figure 7: At ¢ = 0 the
cilium profile is the tilted thick solid curve, and it bends toward the left (solid
arrow) in the first half of the cycle (0 < ¢ < 5). For 5 <t < 10 the filament bends
from the thick dashed line toward the right (dashed arrow). Solid lines in panel (a)
start from ¢ = 0 (thick solid line) to t = 5 moving toward the left following the solid
arrow, with an interval of At = 0.4 between two solid lines. Dashed lines start from
t = 5.4 (thick dashed line) to ¢ = 10 moving toward the right following the dashed
arrow, with an interval of At = 0.4 between two dashed lines. The corresponding
deformation of the elastic shell is shown in panel (b). During the first cycle from
t = 0 tot = 10, the maximum cilium bending is reached before the reversal of
flow. After the first cycle the cilium bending is periodic between the rightward and
leftward cycles, and the second period is shown in the second row of figure 7. We
see that the bending dynamics is asymmetric between leftward and rightward flow
due to the tilt at filament base.

Figure 8 illustrate the dynamics of the filament free end position (left panels)
and angle (right panels) for four values of 7. For the stiff axoneme with n = 0.1,
the response to the oscillatory flow is a more-or-less symmetric rotation around the
initial profile. For the flexible axoneme with n = 20, the rotation at the base is
very asymmetric, with the filament spending more time to the left of the initial
profile. In addition the more flexible axoneme also lags behind the stiff axoneme in
their response to the oscillatory flow. Figure 9 shows the corresponding curvature,
tension, tangent force and normal force at the fixed end. The curvature and tension
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FI1GURE 7. Top row: First period of oscillation for an elastic fil-
ament with n = 20 and 6y(t = 0) = 0.377 in a periodic flow
of periodicity 10. Bottom row: Second period of oscillation from
t =10 to t = 20. Panel (a): Dynamics of the filament. Panel (b):
Corresponding deformation of the elastic shell.

at the base reach maximum in the leftward half of the oscillation, while the tangent
and normal forces reach maximum magnitude in the rightward half of the period.

3.3. Effect of base angle for a flexible filament (7 = 20) in an oscillating
flow. Here we study the dynamics of the flexible filament with 7 = 20 and three
different values for the initial base angle: 6y(t = 0) = 0.57 (upright position),
Oo(t = 0) = 0.377 (tilted toward the right), and 6y(t = 0) = 0.707 (tilted toward
the left). Figure 10 shows the filament angle at the fixed end (top panel) and at the
free end (bottom panel). The solid curves are for the upright position, the dashed
curves are for 6y = 0.70m and the dash-dotted curves are for 6y = 0.37w. After
the first period we find similar filament angle at free end y(s = 1) (bottom panel)
during the first half of each cycle, while significant difference is found during the
second half of each cycle. The corresponding variations of curvature x, tension, and
forces (F* and F™) at the fixed filament end (s = 0) are shown in figure 10(b) and
(c).

Similar to the variation in the filament angle at the free end, the curvature at
the fixed end is almost identical during the first one-third period of oscillation.
Larger curvature, tension and forces (in magnitude) at the base are observed for
the cilium tilted in the flow direction. The axonemal base is where the largest
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FIGURE 8. Panel (a): Location of the free end (s = 1). Panel (b):
Angles at the free end (top) and the fixed end (bottom). n = 0.1
for the dotted lines, n = 1 for the dash-dotted lines, = 10 for the
long dashed lines, and 1 = 20 for the solid lines.
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FIGURE 9. Panel (a): Curvature x (top) and tension (bottom) at
the fixed end. Panel (b): Tangential force F* (top) and normal
force F™ (bottom). n = 0.1 for the dotted lines, n = 1 for the
dash-dotted lines, n = 10 for the long dashed lines, and 7 = 20 for
the solid lines.

stress locates when the cilia bend under flow [32, 40]. It has been speculated that
such large stress at the base is closely related to the activation of ion channels
such as polycystin-2. Therefore our findings show that it is possible to enhance the
sensitivity (larger tension and forces at filament base) by slightly tilting the cilium
base in the direction of flow.

3.4. Oscillating versus pulsing flows. Here we investigate the difference be-
tween an oscillating flow and a pulsing flow. For a pulsing flow we use U =
—1 [tanh(10sin(2%)) + 1] (y,0): The flow magnitude varies quickly from zero to
unity at the beginning, and then transitions smoothly to zero in the second half of
the cycle (dashed line in figure 3(c)). Figure 11 shows the comparison of filament
free end position (left panels) and angles (right panels) between the two flows for
n = 20, initial filament base angle 6y = 0.57, and flow period T" = 10. After the
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FIGURE 10. n = 20 with different initial base angles: 6y(t = 0) =
0.57 for solid lines, 6y(t = 0) = 0.377 for dash-dotted lines, and
Oo(t = 0) = 0.707 for dashed lines. Panel (a): base angle (top)
and angle at the free end (bottom). Panel (b): Curvature & (top)
and tension (bottom) at the fixed end. Panel (c): Tangential force
F* (top) and normal force F™ (bottom).

first transitional period, we find slow relaxation in the second half of each cycle for
the pulsaile flow. In addition, the filament stays in the left all through the three
periods shown.

Figure 12(a) shows the corresponding variation of filament curvature (top panel)
and filament tension (bottom panel) at the fixed end. Figure 12(b) shows the
corresponding tangent (top) and normal (bottom) forces at the fixed end. For the
pulsatile flow, we observe that the tension stays positive while it changes sign for the
oscillating flow. In addition we find that the tangential force F'* reaches a maximum
value right after the pulsing flow is turned on, while F'* reaches a minimum when
at the beginning of each cycle for the oscillating flow.

4. D1scussiION AND CONCLUSION

In this work we used the elastic filament-sheet model to simulate the dynamics of
a primary cilium under time-periodic fluid flows. Simulation results show that high
tension and forces at the cilium base are associated with flexible ciliary axoneme.
We also find that a tilt at the base may help the cilium differentiate the flow
direction via the forces at the base. In § 3.4 we further compare the dynamics of
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FIGURE 11. Panel (a): Location of the free end (s = 1). Panel
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FIGURE 12. Panel (a): Curvature k£ (top) and tension (bottom)
at the fixed end. Panel (b): Tangential force F* (top) and normal
force F™ (bottom). Flow period T = 10. Dashed lines are for
oscillating flow and solid lines are for pulsatile flow.

an upright filament with 7 = 20 between the oscillating flow and the pulsatile flow
of the same period 7' = 10.

In experiments [18, 4] pulsatile flow is more effective than steady or oscillating
flow in terms of the fraction of bone cells that respond to the fluid flow stimulation.
In addition, it is also found that the pulsatile flow becomes less stimulating as the
flow frequency increases. Here we study the effect of frequency of a pulsing flow.
Figure 13 shows the curvature, tension and forces at axoneme base plotted against
time (in period). Comparing results for all three periods, we find that the frequency
does not affect much the magnitude of these variables. Assuming that these high
tension and forces along the filament provides a strong likelihood of opening up
ion channels near the basal body, we speculate that, over a sufficient duration,
large flow-induced cilium bending will stimulate the cellular signaling processes, as
suggested by [32]. Therefore the reduction in cellular responses to the mechanical
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FIGURE 13. Dynamics at different frequencies with n = 20, 0y(t =
0) = 0.57 for the pulsing flow. T' = 15 for the solid lines, T' = 10
for the dashed lines and 7' = 5 for the dash-dotted lines. Panel (a):
Curvature k (top) and tension (bottom) at the fixed end. Panel
(b): Tangential force F* (top) and normal force F™ (bottom).

stimulation at high frequencies may be due to (1) the structural change (wear and
tear) of ciliary basal body from repetitive bending at high frequencies, or (2) the
ion channels do not have time to respond to the stress at high frequencies.

The cellular response to fluid shear stresses is shown to depend on the integrity
of microtubular network [16]. Recently it has also been found that the number of
microtubules around the primary cilium basal body increases when the cilium is
subject to fluid flow stimulation. Accompanied with the increase in microtubules is
a morphological change in the microtubule network in response to the stimulation
from fluid flow [7]. It will be interesting to compare these results with experimental
observations from the oscillatory flow chamber and make quantitative connections
with the morphological changes of the cytoskeletal network that is in contact with
the basal body.

We are currently working to replace the elastic shell in our filament-sheet model
with a cross-linked semi-flexible polymer network to model the cytoskeletal network
that is connected with the cilium basal body. The mechanical transduction of
such a random, semi-flexible, cross-linked biopolymer network is a very challenging
subject because its in vivo properties are expected to be highly dependent on the
length and time scales on which they are being probed. The static mechanical
properties of such networks has been investigated in the linear response regime
at zero temperature [13, 14, 36]. Such networks can be constructed by sequential
random deposition of monodisperse filaments into a two-dimensional box. Since
the position and orientation of filaments are uniformly distributed over the allowed
ranges, the networks are isotropic and homogeneous on sufficiently large scales.
FEach intersection between filaments is a cross link. The elastic moduli can be
computed from the discrete Hamiltonian that consists of both the discrete bending
energy and compression/extensional energy [2, 15, 24].
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