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The dynamics of a compound vesicle (a lipid bilayer membrane enclosing a fluid with a suspended

particle) in shear flow is investigated by using both numerical simulations and theoretical analysis. We

find that the nonlinear hydrodynamic interaction between the inclusion and the confining membrane gives

rise to new features of the vesicle dynamics: The transition from tank treading to tumbling can occur in the

absence of any viscosity mismatch, and a vesicle can swing if the enclosed particle is nonspherical. Our

results highlight the complex effects of internal cellular structures have on cell dynamics in micro-

circulatory flows. For example, parasites in malaria-infected erythrocytes increase cytoplasmic viscosity,

which leads to increase in blood viscosity.
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The biological cell is, in essence, a lipid bilayer mem-
brane encapsulating the cellular content. Giant vesicles
made of lipid membrane serve as simple cell mimics [1],
especially for the red blood cell (RBC) [2]. Under shear
flow, vesicles and RBCs display two main types of dynam-
ics: tank treading (TT) and tumbling (TB) [3–5]. Vesicles
also display a vacillating-breathing motion (VB) (also
called trembling [4] and swinging [6]), in which the vesicle
long axis oscillates about the shear direction while the
shape undergoes strong deformation. Theoretical analyses
highlighted the membrane area incompressibility as the
source of the nonlinear dynamics [7]; unlike vesicles,
droplets do not tumble in shear flow. Moreover, for a
vesicle with a given area-to-volume ratio, the mismatch
between the encapsulated and suspending fluids viscosities
selects the TT or TB mode; only a vesicle containing very
viscous fluid tumbles [7]. This unusual dynamics of indi-
vidual vesicles results in novel rheology: The effective
viscosity of a dilute suspension of TT vesicles decreases
with the increasing viscosity of the inner fluid and
exhibits a minimum at the TT-TB transition [8]. In con-
trast, emulsion viscosity monotonically increases with
drop viscosity [9].

Thus far, all studies of vesicle dynamics have focused on
a vesicle enclosing homogeneous fluid. However, eukary-
otic cells contain a nucleus and organelles (one notable
exception is the mature red blood cells): The nucleus
occupies 18%–44% of the volume in human leukocytes
[10] and affects leukocyte adhesion during inflammatory
response [11]. RBCs infected with malaria parasites have
reduced deformability, which causes disruption (and even
obstruction) of blood flow in the microcirculation [12],
similar to the symptoms caused by sickle cell anemia
[13]. One of the main causes for the impaired RBC de-
formability is the increased cytoplasmic viscosity due to

parasites (in the case of malaria) or polymerized sickle
hemoglobin (in sickle cell anemia).
A question naturally arises: Can we quantify the in-

crease of cytoplasmic viscosity due to internal structure?
Does the inclusion introduce new features in the cell
dynamics? In the case of a double emulsion droplet
(a viscous drop encapsulating another rigid particle or
viscous drop), the hydrodynamic interactions between the
enclosed particle and the confining interface destabilize
and may cause a breakup of the aggregate [14]. In this
Letter, we report the first study of the effect of an inclusion
on vesicle behavior in shear flow. Using both theory and
numerical simulations, we investigate the TT-TB transition
and rheology of the suspension of vesicles with a
solid particle inside. We perform the small-deformation
analysis in two dimensions and make detailed compa-
rison with the two-dimensional simulation results.
Analytical results from the three-dimensional theory con-
firm the general conclusions from the two-dimensional
studies.
We consider a compound vesicle immersed in a linear

shear flow U ¼ ð _�y; 0; 0Þ with _� the constant shear rate.
The deformable vesicle, in 2D, is characterized by the
reduced area A� (the ratio of the vesicle area A0 to the
area of a circle with the vesicle circumference L0) and
the inclusion filling fraction � ¼ a2�=A0, where a is the

inclusion equivalent-circle radius. The excess length �l �
L0=

ffiffiffiffiffiffiffiffiffiffiffiffi
A0=�

p � 2� ¼ 2�ðA�2 � 1Þ.
The velocity outside and inside the vesicle is governed

by the incompressible Stokes equations, which are solved
numerically by the boundary-integral method [15].
Focusing on cases where the interior and suspending fluids
have the same viscosity (viscosity ratio �in=�out ¼ 1), the
velocity vðxÞ at any arbitrary point x in the fluid can be
written as
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vðxÞ ¼ UðxÞ þ S½fb þ f��ðxÞ þ S½f�ðxÞ þT ½u�ðxÞ; (1)

where U is the imposed velocity, fb and f� are membrane
tractions, f is the traction, and u is the velocity at the
interface of the rigid inclusion. S½�� and T ½�� are convo-
lutions with the 2D Stokeslet and the stresslet, respectively
[16]. The local inextensibility constraint requires the ve-
locity along the membrane be solenoidal: div�ðvÞ ¼ 0.

This constraint introduces tension � as a Lagrange multi-
plier [17]. Energy is required to bend the lipid membrane,
and the membrane tractions are thus [18,19]

f b ¼ �B

�
css þ c3

2

�
n; f� ¼ ð�xsÞs; (2)

with n the normal to the interface �, �B the bending
rigidity, c the curvature, and s the arclength parameter;
subscript s denotes a derivative with respect to arclength.

In the limit of x approaching the membrane interface,
Eq. (1) gives an integro-differential equation for the evo-
lution of the membrane. Similarly, taking the limit to the
boundary of the rigid particle, we get an integral equation
for the traction and velocity on the inclusion boundary. The
system of equations is closed by the inextensibility con-
straint and the condition for a force-free and torque-free
rigid body particle motion. We solve the coupled set of
nonlinear integro-differential equations by using a high-
order time-marching scheme and a spectrally accurate
spatial discretization scheme. More details of the numeri-
cal scheme can be found in Refs. [18,20].

An example from our numerical simulations is shown in
Fig. 1, illustrating the dramatic changes the inclusion in-
troduces in the interior flow. One feature is the formation
of two vortices (seen at time 1.87). The interior flow stream-
lines for a particle-free vesicle are always circular.
However, as the filing fraction (i.e., the inclusion size)
increases, it becomes inefficient to maintain a circulatory
flow everywhere in the interior and the flow separates. Since
the presence of the inclusion enhances dissipation, the
compound vesicle behaves similarly to an inclusion-free
vesicle encapsulating a higher viscosity fluid: The larger the
inclusion size, the larger the effective interior fluid viscos-
ity. Figures 2 and 3 show that indeed the inclination angle
and the tank-treading frequency both reduce with increas-
ing inclusion size. The TT-TB transition occurs when the
steady inclination angle reaches zero, which gives a depen-
dence of the critical filling fraction �c on the vesicle
reduced area. Figure 4 shows the boundary for the TT-TB
transition. For comparison, the TT-TB transition from the
3D analysis is plotted against the 3D reduced volume V�.
In order to gain better physical insight and understand

the hydrodynamic coupling of the inclusion dynamics and
the confinement geometry (vesicle shape), we also devel-
oped analytical models for the compound vesicle dynamics
in two and three dimensions. The 3D system is character-

ized by reduced volume V� � ð1þ �a=4�Þ�3=2 [or excess

area �a � A0=ð3V0=4�Þ2=3 � 4�] and the filling fraction
� ¼ 4�a3=3=V0, with V0 the vesicle volume and A0 the
vesicle area. In order to make analytical progress, we
consider a concentric configuration and vesicle shape close
to a circle (in 2D) or a sphere (in 3D). In 2D, the nearly
circular vesicle shape is described by r ¼ 1þP

n�0fne
in�

with jfnj �Oð ffiffiffiffiffiffi
�l

p Þ. The velocity field is expanded in the
basis of solutions of the Stokes equations v�nq [21], where in
2D q ¼ 0; 1,

v ¼ UþX
nq

cnq

�
v�nq þ

X
q0
Xn
qq0v

�
nq0

�
: (3)
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FIG. 2 (color online). Inclination angle c =� of a compound
vesicle as a function of the inclusion filling fraction. The solid
and dashed lines are the analytical results, whereas the points are
from simulations.
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FIG. 1 (color online). Snapshots of a compound vesicle in
linear shear flow and the streamlines in its vicinity. The reduced
area of the vesicle is 0.78, and the filling fraction is 0.27. The
membrane color indicates the magnitude of the tension �. In
contrast to the classical interior flow of an inclusion-free vesicle,
which is circular with a single vortex [18], the flow inside a
compound vesicle separates after a critical filling fraction, lead-
ing to tumbling.
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The scattering matrix X accounts for the flow perturbation
due to the inclusion. Focusing on the n ¼ �2 modes
(the only modes that are excited by the external shear
flow), the leading-order equations for the membrane de-
formation are (for details of the derivation, see [21])

_f ¼ g� 3�

�l

gf; _g ¼ �f� 3�

�l

g2 þ �; (4)

where f�2 ¼ f� gi. � is a function of the inclusion
radius a:

� ¼ �
ffiffiffiffiffiffiffi
2�

p
4

�1þ 3X2
00 þ X2

10

2þ 3X2
00 � 3X2

01 þ X2
10 � X2

11

	; (5)

	 ¼ 1þ X2
01 þ X2

11

� ð1þ X2
00 þ X2

10Þð�3þ 3X2
01 þ X2

11Þ
�1þ 3X2

00 þ X2
10

; (6)

where X2
00 ¼ a4, X2

01 ¼ 2a6, X2
10 ¼ �2a4, and X2

11 ¼
�3a4. A steady TT state corresponds to f ¼ �l=3�
and g2 ¼ �l=3ð1� �l=3�

2Þ. The TT inclination angle

is c ¼ �1=2 arctanðg=fÞ ¼ �1=2 arctanð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2=�l � 1

p Þ.

The critical filling fraction for the TT-TB transition (which
occurs when c ¼ 0) is computed from 3�ð�cÞ2 ¼ �l.
Good agreement in the inclination angle between numeri-
cal simulations and analysis is found for a reduced area
close to 1, while a larger deviation is found for a smaller
reduced area; see Fig. 2. This is also reflected in the TT-TB
transition boundary (Fig. 4). For an inclusion-free 2D
vesicle, the critical viscosity ratio 
c for the TT-TB tran-
sition is computed from 3�=2ð
c þ 1Þ2 ¼ �l [22]. The
compound vesicle can be viewed as a membrane enclosing
a homogeneous fluid with a higher viscosity due to the
inclusion. The effective viscosity of the ‘‘equivalent
fluid’’ can be estimated from the TT-TB transition: At

�c, 3�ð�cÞ2 ¼ 3�=2ð
c þ 1Þ2. Thus, �in=�out ¼ffiffiffiffiffiffiffiffiffi
�=2

p
=�� 1. The same estimate can be made for the 3D

compound vesicle. Thus we find that if the inclusion takes
10% of the vesicle volume, the interior viscosity doubles
(Fig. 5), which is different from estimating the interior
viscosity by using the average shear viscosity of a suspen-
sion of rigid spheres without the confining membrane [23].
Next we explore the effect of the inclusion on the

rheology of a dilute suspension of compound vesicles.
Our numerical and analytical study shows that the steady
effective bulk viscosity increases with the inclusion size.
For a three-dimensional compound vesicle, the variation of
the effective shear viscosity Txy with the 3D filling fraction
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FIG. 3 (color online). Plot of the tank-treading frequency
averaged over a period h!i as a function of the filling fraction.
Snapshots show the steady shapes. The lines are plotted to guide
the eye.
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FIG. 5. Effective interior fluid viscosity versus filling fraction
�. The solid (dash-dotted) line is for a 2D (3D) vesicle, and the
dotted line is the effective interior viscosity from Ref. [23].
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� is plotted in Fig. 6 (see [21] for details of calculations).
At a fixed reduced volume, both Txy and the first normal

stress N1 decrease with the filling fraction in the TT
regime. In the TB and VB regimes, the averaged Txy

increases while N1 averages to 0. Close to the transition,
the effective viscosity Txy in the VB mode is lower than the

TB mode value but eventually approaches it for large �
(and hence large effective interior viscosity), which is
significantly different from the inclusion-free vesicle case
where the stresses in the VB and TB modes diverge as the
interior fluid viscosity increases.

If the inclusion shape is nonspherical, the dynamics
become more complex. For example, an ellipsoidal particle
tumbles while the enclosing vesicle major axis oscillates
around a nonzero inclination angle as seen in Fig. 7. This
motion resembles the swinging of RBCs [24], but its
mechanism is different. For RBCs the swinging arises
from a periodic variation in the elastic membrane energy
during tank treading. For compound vesicles the swinging
is due to a periodic vesicle deformation as the tumbling
inclusion pushes on the membrane. The ‘‘swinging’’ is
more pronounced for a larger inclusion size as seen by
the increasing amplitude of the swings with the filling
fraction.

In summary, in this Letter, we investigate the effect of an
inclusion on vesicle behavior in linear shear flow. Particle
dynamics in a confined geometry with dynamically evolv-
ing boundaries is a problem of fundamental interest, yet it
is virtually unexplored. Our analytical theory and
boundary-integral simulations show that ‘‘internal’’ hydro-
dynamic interactions between the inclusion and the mov-
ing membrane induce a TT-TB transition even if the inner
and suspending fluids are the same and swinging in the
presence of a nonspherical inclusion. In a broader context,
the results provide insights into the effects of internal
structures such as the nucleus in leukocytes or parasites
in malaria-infected erythrocytes on cell dynamics in micro-
circulatory flows. Multiple inclusions are expected to give
rise to richer vesicle behavior but pose a greater challenge
to numerical simulations [21]. We hope our study will

stimulate further theoretical and experimental work on
this interesting problem.
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FIG. 7 (color online). Tank-treading vesicle with a tumbling
elliptical inclusion.
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