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Abstract. We present a new algorithm for segmenting organs in CT scans
for radiotherapy treatment planning. Given a contour of an organ that is
segmented in one image, our algorithm proceeds to segment contours that
identify the same organ in the consecutive images. Our technique combines
partial differential equations-based morphing active contours with algorithms
for joint segmentation and registration. The coupling between these different
techniques is done in order to deal with the complexity of segmenting “real”
images, where boundaries are not always well defined, and the initial contour
is not an isophote of the image.

1. Introduction. In this paper, we are concerned with the segmentation of com-
puted tomography (CT) scans for radiotherapy treatment planning. The CT scans
are a sequence of two-dimensional images that correspond to parallel cross-sections
of part of the patient’s body. They are used both for diagnosis and for planning
the radiotherapy treatment.

The treatment planning is a two-step procedure. First, a radiation oncologist
has to identify in every image two types of objects: tumors that are to be destroyed
(with a sufficient dose of radiation) and healthy tissues that are to be protected (by
trying to minimize the amount of radiation they receive). In the second step, the
segmented information is used as an input to various optimization algorithms, to
determine an optimal treatment. Typically, at this stage one would like to calibrate
the number of beams, their directions, their intensities, modulations, shapes, and
so forth. The entire process is time consuming. It takes about four to eight hours
to prepare a radiotherapy plan for each patient. About half of this time is spent
on the segmentation phase.

The accuracy of the treatment depends critically on the identification and on the
segmentation of the organs and the tumor in the CT scans. Surprisingly, despite
the recent advances in imaging processing technologies, the clinical segmentation
process is still performed using manual tools. Our goal in this paper is to present
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a method that will partially automate the segmentation process, and by that we
hope to reduce substantially the time that this phase requires.

We would like to note that this segmentation problem is expected only to worsen
with the arrival of the new generation of CT scanners. The resolution of the new
machines in the transverse direction is about three times better than that of the
present CT scanners (1 mm compared with 3 mm). Although one expects dense sets
of data to provide more information for processing the images, the lack of successful
automated algorithms implies that at least in the near future, a radiation oncologist
would expect to spend significantly more time in segmenting the images.

The basic assumptions that guide us when approaching the design of an algo-
rithm for solving this problem are the following: First, the number of images is
relatively small (on the order of 40 to 80) and all of them are given up front. Sec-
ond, we would like to have a fast algorithm that can still be used off-line (and not
necessarily in real time). Finally, we assume that a radiation oncologist can provide
certain information that will be outlined later.

Given these assumptions, a framework that seems to be particularly suitable for
solving this problem is the machinery of “morphing active contours” introduced in
[1, 2, 3]. This algorithm assumes as data two images and a segmented contour that
identifies the object of interest in the first image. The goal is then to identify in the
second image a contour that corresponds to the same object that was segmented
in the first image. This is done with a system of two partial differential equations.
One equation is an advection equation with a velocity proportional to the difference
between the two images. This equation is in charge of morphing the two images
to each other. The segmented contour in the first image is represented implicitly
as a zero contour of a level set function. The second equation evolves this level set
function with the same velocity given by the morphing equation. The hope is that
at the end of this process the resulting zero level set will represent the boundary of
the target object in the second image.

Unfortunately, as shall be demonstrated later, a straightforward application of
morphing active contours algorithms fails to produce acceptable results in cases
where the initial curve is not a level set of the first image. As expected, most
of the objects we are interested in segmenting in our problem do not satisfy this
requirement: in some cases, part of their boundary is not well defined; in other cases,
they are connected with other organs and it seems to be impossible to separate them
with no prior knowledge.

We would like to mention segmentation-based registration algorithms. These
“feature-based” methods provide a reference shape for the segmentation based on
prior knowledge. Given some preliminary input, either from low-level segmenta-
tion (such as edge detection) or customized segmentation for specific anatomical
structures (such as physician’s segmentation), the common features of the object to
be identified are registered to a common reference frame. The object can then be
segmented according to the registered features. Recently an explicit combination
of registration with segmentation has been implemented in a variational framework
through active contours by Yezzi et al. [16]. Moelich and Chan [9] extend the
algorithm of Yezzi et al. [16] to joint segmentation of an object in two images, and
the prior knowledge is implicitly incorporated through the simultaneous evolution
of the registration maps and the active contour in the variation framework.

What we propose in this work is to combine the morphing active contours algo-
rithm with the joint segmentation and registration algorithm. This will result in a
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two-step segmentation algorithm. In the first step, we expect to segment the object
based on the registered features as given by a prior segmentation. This phase of
joint segmentation leaves us with an object boundary whose shape is very similar
to the one in the prior segmentation. We then refine the segmentation through
morphing of active contours to incorporate new features of the object in the new
frame. By repeating this process for several consecutive frames, this algorithm in
effect refines the registration to incorporate new features introduced by morphing,
which makes it suitable for segmenting a sequence of medical images.

The structure of this paper is as follows: in section 2 we briefly describe conven-
tional morphing active contours algorithm. We then review the joint segmentation
and registration algorithm in section 3. Our way of combining these two algo-
rithms is then presented in section 4. The results of our algorithm as implemented
in several test cases are presented in section 5. We show that in some cases our
algorithm produces results equivalent to those obtained with the conventional mor-
phing active contours algorithm, but in other cases, the segmentation performed
with our algorithm is significantly better than the segmentation performed with
the conventional morphing algorithm. We end with several concluding remarks in
section 6.

2. Morphing active contours. We start with some basic notations. We assume
that we have a sequence of d CT scans, which we denote as {I}j , j = 1, . . . , d. All
images are assumed to have an identical size of N ×N voxels (with a typical value
of N = 512). Every image is a two-dimensional map that assigns a non-negative
scalar (gray scale value) to every pixel, that is,

Ij : ZN × ZN → R+,

where ZN = {1, . . . , N}. Since we intend to approach the problem with continuum
methods, we will assume that every image is a sample (with a prescribed resolution)
of an underlying function that is defined almost everywhere. Hence, we can assume
a squared domain, which will be arbitrarily normalized to the unit square [0, 1] ×
[0, 1], on which a function Ij(x, y) is defined. (of course we do not know the
underlying function, though we can always reconstruct such a function from the
image, for example, as a piecewise-constant function).

The second type of objects we will deal with are contours that represent objects of
interest in the different images. To simplify the notations, we assume that in every
image we are interested in only one object. This simplification does not modify the
nature of the problem, as the algorithm we present can be used to capture all the
objects of interest in any given image simultaneously. We therefore assume that in
every image Ij there is one object of interest (either a tumor or a critical organ)
for which the boundary is denoted by CIj . The boundary of the object is assumed
to be a closed (though not necessarily connected or simple) contour.

With these notations in hand, we assume that two images, namely I1 and I2,
are given. We also assume that an object of interest was segmented in the first
image I1, and is given in terms of the contour CI1 . The goal is to locate the same
object in the second image, I2, obtaining the contour CI2 (consult Fig. 1).

The method of morphing active contours as a way to approach this problem was
proposed by Bertalmio, Sapiro, and Randall [2], (see also [1]). In this algorithm,
the idea is to morph the first image I1 to the second image I2. As I1 is morphed
into I2, the object boundary CI1 is simultaneously evolved using the same velocity,
and ideally settles to CI2 , which is the object boundary in I2. The whole process
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Figure 1. Morphing active contours: the general framework.

is carried out with a system of partial differential equations. This requires an
additional time variable, which is being introduced to the problem by setting the
initial image I1 to be the information that is known at “time” t = 0. The morphing
of one image to the other is then treated as an evolution in time. The second image
I2 will be obtained in this process as t →∞, though from a practical point of view,
the execution of any such algorithm stops once the difference between the morphed
image and the target image is smaller than a certain threshold.

With this in mind, we can denote the first image as I1(x, y, 0). The morphing
process either directly morphs the image I1 to I2, or it can be applied to features
of these images. Hence, in general, we can define a “features map” Fj = F(Ij) and
evolve F1 according to

∂F1(x, y, t)
∂t

= β(x, y, t)||∇F1(x, y, t)||, (1)

with a time-dependent “morphing velocity” β(x, y, t) yet to be determined. To
simultaneously evolve the contour CI1 , we consider a function u(x, y, t) for which
CI1 is a level-set (isophote) at time t = 0. We then evolve u(x, y, t) according to

∂u(x, y, t)
∂t

= β̂(x, y, t)||∇u(x, y, t)||. (2)

The velocity β̂(x, y, t) is obtained by projecting the morphing velocity β onto the
normal direction of the level set CI (i.e., the zero level set of u at time t). Hence
β̂ ≡ β ~NF1 · ~Nu, and ~NF1 and ~Nu are the normals to the level sets of F1 and u,
respectively.

It is natural to assume that the “morphing velocity” β(x, y, t) is to proportional
to the difference between F1 and F2 (features of I2). The speed function that was
proposed in [2] is

β ≡ F2(x, y)−F1(x, y), (3)
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where Fi are the features of image i that are defined as

Fi ≡ L(Ii), i = 1, 2. (4)

Here, L(·) can be an edge map of a band around the level set CI (see [2], [13] and
[10, 14, 15] for more details).

This segmentation scheme by morphing active contours was shown to work well
for cases where the images are almost bi-level, and have simple features around the
object boundary [2]. For more complicated images, where the image is far from bi-
level, Bertalmio et al.[2] suggested that more intermediate frames in the sequence
will enhance the performance and result in better segmentation. Although this idea
might work in certain cases, there are common instances where the object boundary
may not correspond to an isophote in the image I. In these cases, most samples of
the data will not solve the problem.

To further elucidate this point, we implement the above algorithm and apply it
to real CT scans. Figure 2a shows a CT scan of abdominal organs and Figure 2b is
a manual segmentation by a radiation oncologist of the liver based on his medical
knowledge and experience. The normalized, de-noised image intensity along the
liver boundary as a function of the curve length is shown in Figure 2c. It is clear
that the liver boundary that was segmented by a radiation oncologist does not
correspond to an isophote. Furthermore, we notice that the denoised image is not
bilevel.
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Figure 2. (a) Two adjacent frames from a sequence of CT scans
of a patient; (b) segmentation by physicians; (c) image intensity
along contour in (b).

The physician’s manual segmentation of the next frame is shown in Figure 3. If
we utilize the morphing of contours by morphing the scans of Figure 2a to Figure 3a,
and simultaneously tracking the contour in Figure 2b using the velocity in Equation
(2), we find that the final segmentation contour from morphing and tracking is far
from the physician’s segmentation. The physician’s segmentation is shown as the
solid line in Figure 4 while the result of the morphing active contours algorithm is
shown as the dashed line in Figure 4.

This typical example makes it clear that for segmenting internal organs in a
sequence of scans, the simple morphing and tracking algorithm requires certain
improvements and refinements. Once again, we would like to stress that increasing
the number of images is not a valid option in this case, and even if more frames
were available, the contour that represents the boundary of the liver would still be
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Figure 3. (a) Two adjacent frames from a sequence of CT scans;
(b) segmentation by physicians; (c) image intensity along contour
in (b).

far from being an isophote, and the results of this algorithm would probably be
unsatisfactory.

Figure 4. Physician’s segmentation (solid line) versus results
from morphing and tracking (dashed line) of the contour in Figure
2.

3. Joint segmentation and registration. As illustrated in section 2, the cause
for the failure in segmenting internal organs by morphing active contours is the
weak correlation between the organ boundary and the isophote of image intensity.
Consequently, the morphing velocity based on the difference in image intensities
evolves the contour toward an isophote that does not correspond to the organ
boundary, and eventually leads to great discrepancy between the morphed active
contour and the physician’s segmentation as illustrated in Figure 4. To segment
images where the object boundary does not correspond to an isophote, a significant
modification to the conventional variational approach of the level set method is
necessary. Furthermore, the radiation oncologist relies on prior knowledge of the
expected shape of the organ, as well as the relative location of the scan in the
anatomy. Thus, we are particularly interested in segmentation of a sequence of
images based on prior knowledge and object features in the variational framework.

Many segmentation algorithms use statistics of an ensemble of images by reg-
istering various features in the images prior to segmenting (see [5] and [6, 7] and
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references therein). In this context, registration amounts to finding a pointwise
transformation between the source image (I1) and the target image (I2) that mini-
mizes a certain dissimilarity measure. Feature-based registration requires an input
of prior shapes and accurate feature detectors. On the other hand, direct registra-
tion involves estimating the transformation between the source and targeted images
without feature extraction. In direct (nonrigid) registration, as demonstrated by
Paragios et al., the (dis)similarity measure can be taken as the sum of squared
differences over pixel intensities. Such a similarity measure works well for non-rigid
registration even when the registered source shapes differ slightly from the target
objects, or when the target image is damaged by occlusions and local deformation
due to noise [11]. However, it may be impractical to apply this algorithm to seg-
ment an organ in a sequence of images, because the shape of the boundary depends
on the location and orientation of the image; therefore many different prior shapes
are required for the registration process.

Since our purpose is to segment an organ in a sequence of CT scans where the
organ boundary changes smoothly, it helps to evolve both the segmentation and the
registration simultaneouslly so that the exact anatomical position of the organ plays
little role in the registration process. This can be done by evolving the prior shape.
As shown by Yezzi et al. [16, 17], one can conduct simultaneous registration and
segmentation through a similarity measure, of which the (local) minimum is located
by evolving the active contour in the variational framework. This interdependence
between registration and segmentation has been discussed and explored by Yezzi
et al., who combined registration with active contours and applied their algorithm
to knowledge-based segmentation of medical images [16, 17].

Based on the work of Yezzi et al., Moelich and Chan [9] proposed a refined
algorithm to jointly segment an object in two images in the framework of the
variational level set method with registration of an active contour. While Yezzi
et al. segment one image, Moelich and Chan simultaneously segment two images.
Instead of one registration map as in [16, 17], two affine mappings for registration
are used for better performance in terms of locating the minimum of the variational
energy. The energy to be minimized is constructed with logic models that are
taken from Sandberg and Chan [12]. This is somewhat similar to the multichannel
algorithm by Vese and Chan [15]. Overall they have demonstrated how a blurred
object of a similar shape and features to an object in another image can be jointly
segmented based on the minimizer for the variational energy. The algorithm can
be summarized as follows.

Following our previous notations, I1 : ZN × ZN → R+ and I2 : ZN × ZN →
R+ denote two unregistered images, and each image contains a common object of
interest to be segmented. Let CI1 and CI2 denote the contours that segment the
object in I1 and I2, respectively. The key idea is to relate these two contours
through a parametrized mapping g to a contour C. We will consider a specific
mapping at the end of the section. In the approach of Yezzi et al.[16, 17], CI2 =
g(CI1 ; p), where p are the parameters for g. This approach is adapted in Moelich
and Chan’s algorithm; they consider CI1 and CI2 to be a Euclidean transformation
of a contour C under g for two different sets of registration parameters p1 and p2.
That is,

CIi = g(C; pi), i = 1, 2. (5)
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The use of two mappings allows for more flexibility in avoiding local minima in
the search of registration parameters. The goal then is to find a contour C and
parameters p1 and p2 that minimize the energy

E(C; p1, p2) = Eint(C; p1, p2) + Eext(C; p1, p2) + µlength(C), (6)

where Eint is the internal energy and Eext is the exterior energy, defined as

Eint(C; p1, p2) =
∫

int(C)
F int(x; p1, p2)dx, (7)

Eext(C; p1, p2) =
∫

ext(C)
F ext(x; p1, p2)dx.

The energy densities F int(x; p1, p2) and F ext(x; p1, p2) depend on which logic model
is being used [9].

The logic models, developed by Sandberg and Chan [12], are designed to segment
multichannel images according to logical combination of the two images. Each
logical relation and interpretation of the two images may correspond to a different
minimum in the multi-channel algorithm. A great advantage in choosing the logical
models over the multi-channel algorithm is to minimize the dependence of the final
segmentation on the initial conditions. For more details we refer interested readers
to [9] and references therein. From Sandberg and Chan [12], we obtain the logical
OR model

F int(x; p1, p2) = λint
√

F int
1 (x; p1)F int

2 (x; p2), (8)

F ext(x; p1, p2) = λext

(
1−

√
(1− F ext

1 (x; p1))(1− F ext
2 (x; p2))

)
,

where
F j

i (x; pi) = kj
i (Ii(g(x; pi))− cj

i )
2, j ∈ {int, ext}. (9)

The logical AND model is

F int(x; p1, p2) = λint

(
1−

√
(1− F int

1 (x; p1))(1− F int
2 (x; p2))

)
, (10)

F ext(x; p1, p2) = λext
√

F ext
1 (x; p1)F ext

2 (x; p2),

with the same F int
i (x; pi) and F ext

i (x; pi) defined in Equation (9). The interior and
exterior averages cint

i and cext
i are given by

cint
i ≡

∫
int(Ci)

H(φ)Iidx∫
int(Ci)

H(φ)dx
, cext

i ≡
∫
ext(Ci)

(1−H(φ))Iidx∫
ext(Ci)

(1−H(φ))dx
, i = 1, 2. (11)

φ is the level set function (of which the zero contour corresponds to the active
contour C), and the Heaviside function H(φ) is calculated using the construction
scheme in [4]. kj

i are normalizing scale factors, chosen so that F j
i ≤ 1. The

coefficients λj
i , λint and λext are design parameters. In our implementation, the

values for these parameters are fixed for each test case presented in section 5.
For the registration, we use the Euclidean transformation as in [9],

g(x) = MRx + T, (12)

where

M =
[

m 0
0 m

]
, R =

[
cos(∆θ) − sin(∆θ)
sin(∆θ) cos(∆θ)

]
, T =

[
∆x
∆y

]
. (13)
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The parameters of g are pi = (∆xi,∆yi, ∆θi,mi), where ∆xi and ∆yi are the
translations, ∆θi is the rotation about the center of CIi

, and mi is the magnification.
As in [16], anisotropic magnification is possible, but here we adopted isotropic
magnification for both maps. When p = (0, 0, 0, 1), the transformation g(x; p) is
the identity map.

The energy from Equation (6), which depends on the segmentation contour C and
the registration parameters p1 and p2, is minimized by “interleaving” segmentation
and registration, as proposed in [9]. During each iteration of the algorithm, the
estimates of C, p1 and p2 gradually improve. After updating the parameters p1 and
p2, an updated gradient flow can be calculated and used to evolve the contour C.
We refer interested readers to [9] for a more detailed illustration of how well this
algorithm works in various examples.

4. An algorithm for segmenting CT scans. Results from the joint segmenta-
tion and registration [9] show that even a blurred object in the target image can
be accurately segmented without much prior knowledge of the object’s shape and
features. Of course an a priori condition for the algorithm to work properly is that
the object of interest be of similar shape in both images. In essence, the joint
segmentation and registration algorithm seeks the “optimized” common features
in both images that minimize the intensity-based energy. From this point of view,
the joint segmentation algorithm is more flexible than the non-rigid registration
algorithm proposed in [11]. For example, it is possible to jointly segment images
without exact prior knowledge as the algorithm seeks the common features and the
registration simultaneously by minimizing the energy. It also allows the possibility
of segmenting more than one object in the target image. Furthermore, specifying
the logical relations between the two images allows the segmented object to have a
different shape than the source object.

The algorithm of [9] seems ideal for our purpose, because we can segment an
organ not in just one target image, but also in a few subsequent frames as its
shape and geometry change smoothly. We propose to iterate the joint segmentation
and registration process as follows: First, we construct a bilevel image I1 from a
given object boundary. Knowing that the target object (with possibly slightly
different boundary) is located near the source object in the second image I2, we
jointly segment both I1 and I2 using the logical AND model in Moelich and Chan’s
algorithm. We choose the AND model to emphasize the similar features between the
two objects. In this fashion, we can determine the boundary of the same organ in
I2 despite the difficulties discussed previously in section2. Once the segmentation is
complete for the first target image, we use the resulting segmentation as the source
object for segmenting the next target image by repeating the above process.

The main drawback to this procedure is that the shape of the segmented object
must be similar to the source object because of the AND logic relation. We typically
expect the features to be similar between the different frames, but there still are
some differences that we are interested in capturing. The alternative OR model is
in some sense too flexible, for it allows many irrelevant features to accumulate. To
track the changes in the object’s shape and features, we propose to combine the
joint segmentation and registration with morphing of active contours as follows. We
start with two consecutive images, I1 and I2, and a segmented contour CI1 in I1,
which is either given by manual segmentation or is taken from a previous iteration
of our algorithm. First, we generate a bi-level image from CI1 . We then jointly
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Figure 5. The proposed procedure combining joint segmentation
and morphing of active contours to segment internal organs based
on oncologists’ input.

segment and register this image with I2. This process results with a set of mapping
parameters p2 from the associated registration. The corresponding transformed
image I ′2 ≡ I2(g(x; p2)) and the contour C′2 ≡ C(g(x; p2)) can be calculated based
on the parameters p2. We then use the morphing active algorithm: we morph I ′2
to I2 using equation (1) and at the same time track the active contour C′2 using
Equation (2).

Figure 4 illustrates the proposed algorithm. After we complete the process for
the first target image, we use the segmentation in the first target image as an
initial condition to segment the next image. As already seen in section 2, the organ
boundary C′2 does not correspond to an isophote in I ′2. We also note that different
features can be found around the organ to be segmented (liver, in this case) in both
images, and some of these features will be included using the conventional level set
method for segmentation.

Following [9], we start the iteration with registration. This seems to reduce the
sensitivity of the algorithm to local minima. During each iteration, we first hold C
fixed and improve the estimates of the registration parameters. As in [9], we use
a line search for the joint segmentation algorithm. The direction of the search is
found by taking numerical derivatives of the energy Eint(C; p1, p2) with respect to
the components of p1 and p2. For example, the components of p1 are updated by
numerically integrating

∂q

∂t
= −∂Etotal(C; p1, p2)

∂q
, (14)

where q stands for the quantities ∆x1, ∆y1, ∆θ1, and m1. Next, we hold p1 and p2

fixed and improve the estimate of C by evolving it along the gradient flow, which
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in this context is given by
∂C
∂t

= (F int(x; p1, p2)− F ext(x; p1, p2) + µκ)n̂, (15)

where n̂ is the exterior unit normal vector of the contour C. This process is contin-
ued until a minimum is found.

We would like to emphasize that morphing active contours does refine the seg-
mentation results when compared with the results of joint segmentation and regis-
tration. This will be illustrated in section 5.
Remarks

1. In [9], the internal energy is used for evolving the mapping parameters in
(14). We replace the internal energy by the total energy, which seems to
perform better in this application.

2. We can restrict our search for local minimum to a reasonable range of values
for both sets of mapping parameters. For example, since we know that the
distance between the images is less than 3 mm, we can search for a
minimum of the energy within a range for the scaling factor.

3. We would like to stress the differences between our algorithm and the
algorithm of Yezzi et al. [17]. First, they use only one registration map that
evolves simultaneously with the level set. Moelich and Chan [9] already
noted that one registration map is not always enough for segmenting blurred
images and mentioned that their logic model for the energy works better
than the energy that is used in [16]. In our work, we use a joint segmentation
and registration with the addition of morphing for fine tuning of the
segmentation. We also start with a bilevel image that is generated from the
known contour in the first image. This is unlike any of the previous works.

4. For our application, the initial registration phase in [9] is not as essential
because the objects in the two images are close to each other. For results
presented in the following session, the initial conditions for the contour C are
the given segmentation from oncologists, or from the previous joint
segmentation. For the registration maps, it seems to work well, because we
use unit maps for initial conditions.

5. Results. In this section, we present results obtained from applying our algo-
rithm to several test cases, all of which involve segmentation of an organ in a
series of CT scans. In all test cases, we compare our results to the results of the
conventional morphing active contours algorithm, and to a manual segmentation
(whenever available) that was done by a radiation oncologist from the radiation
oncology department at Stanford’s medical school. This manual segmentation in-
corporates the anatomical knowledge about the particular organ and is considered
as our gold standard. It is important to note that there is a difference between the
way different physicians segment the same organ in the same image.

Our first example is of a segmentation of a liver. In Figure 6, we present the
consecutive four slices that follow the initial slice for which a manual segmentation
of the liver is given. In all figures, the dashed lines represent the manual segmen-
tation by the radiation oncologist. The solid lines in the top images in Figure 6
represent the segmentation by the morphing active contours algorithm, while the
solid lines in the bottom images represent the segmentation obtained by our al-
gorithm. In all four images, our algorithm generally produces significantly better
results than those from the morphing of active contours. In particular, we do not
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Figure 6. Liver. Top: Segmentation with morphing active con-
tours. Bottom: Segmentation with our algorithm. The dashed
lines indicate the manual segmentation.

observe the oscillations on the boundary that are present in the results obtained
by the morphing active contours algorithm. We further note that the results from
our algorithm, as shown in the bottom part of Figure 6, agree closely with the
oncologist’s segmentation. In some cases (e.g. the third figure from the left), our
automatic segmentation seems better than the manual segmentation.

We would like to emphasize that for images such as the CT scans in Figure 6,
there is no hope that conventional level set algorithms could segment the liver:
the boundary of the liver is not always well defined, and there are certain regions
where, with no prior knowledge, one would be tempted to connect the liver with
neighboring structures. In this case, if a physician trusts the results and decides
to proceed with a radiotherapy treatment planning based on these results, we save
80% of the manual segmentation time.

A more significant deviation between our segmentation and the physician’s seg-
mentation is found after the fourth scan in the series. This may be attributed to an
accumulated error in our algorithm or to a significant deformation of the boundaries
of the liver between these images.

Many methods have been proposed to quantify performance of the segmentation
algorithms in standard image processing, where target objects have well-defined
boundaries and the correct object contour can be readily determined without any
subjective human input. However, in our applications, a good segmentation is the
contour that matches well with organ contours from physicians, among whom the
definition of a “uniquely correct” contour of an organ is unavailable and very often
subject to their experience, training, and different circumstances. A comprehen-
sive comparison between the algorithm and different manual segmentations will be
essential before any clinical tests and is left for the future. In the meantime, we
propose to quantify the segmentation from different algorithms as follows. First,
we define three markers, of which the point values are assigned according to their
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Our Algorithm Morphing
M1(%) M2(%) M3(%) M1(%) M2(%) M3(%)

Slice 1 90.18 1.76 32.24 49.12 42.82 0.00
Slice 2 82.57 6.64 14.94 61.20 28.01 7.05
Slice 3 88.07 4.37 13.72 68.79 23.66 11.73
Slice 4 78.94 12.74 19.82 66.90 24.78 11.62

Table 1. Table of the integrals M1, M2, and M3 for segmenta-
tions in Figure 6

relative location to the numerical segmentation contour Cn (either from morphing
active contours or from our algorithm) and the manual segmentation Cp from a
physician

m1 ≡
{

1 if inside both Cp and Cn

0 otherwise.

m2 ≡
{

1 if inside Cp but outside Cn

0 otherwise.

m3 ≡
{

1 if inside Cn but outside Cp

0 otherwise.

The integrals of m1, m2, and m3 over the whole domain can be used as indicators of
the segmentation performance when they are scaled to M0, the total area enclosed
by the contour from the manual segmentation:

M1 ≡
∫

m1dxdy

M0
, M2 ≡

∫
m2dxdy

M0
, M3 ≡

∫
m3dxdy

M0
. (16)

The closerM1 is to unity, the better the match between the numerical segmentation
Cn and the manual contour Cp.

In Table 1, we tabulate the values of the three integrals from both our algorithm
(left side) and the traditional morphing of active contours (right side). From these
values, we can conclude that segmentation from our algorithm is quantitatively
better than the traditional morphing scheme, because M1 remains close to 80% for
all four slices using our algorithm. AlsoM2, the portion of the manual contour that
does not overlap with segmentation from the numerical algorithms, is significantly
smaller for our algorithm. We further note that our algorithm gives a larger M3,
which may be appropriate for application to radiation treatment given the safety
factors that are involved when protecting essential organs from overexposure to
radiation.

We now demonstrate the effect of morphing in our algorithm. As a typical
example, we pick the second frame in Figure 6 and display the difference in the
segmentation due to morphing and tracking in Figure 7. The left panel shows the
active contour (solid line) from the joint segmentation before the morphing. In the
right panel, we show the active contour after morphing and tracking, and the dashed
lines are the oncologist’s manual segmentation in both panels. The morphing and
tracking seems to moderately improve the joint segmentation.

Our next example, in which we segment a bladder, is shown in Figure 8. Similar
to the previous example, we show four consecutive segmentations that follow the
first image with a given manual segmentation of the bladder. The solid line in the
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Figure 7. Morphing of active contour for fine-tuning of the joint
segmentation. The dashed lines indicate the manual segmentaiton.

Figure 8. Bladder. Top: Segmentation with morphing active
contours. Bottom: Segmentations with our algorithm. The dashed
lines are the manual segmentation.

top images in Figure 8 shows the results obtained with the morphing active contours
algorithm, while the solid line in the bottom images shows the segmentation results
obtained with our algorithm. This is a relatively difficult segmentation problem,
because there is no clear boundary between the bladder and the prostate.

As in the previous case, we tabulate the integrals M1, M2, and M3 in Table
2. Comparing the first image in the top and bottom rows, the morphing algorithm
seems to work better for the first two slices. Clearly there is a difference between
the first two slices and the last two slices in Figure 8. For the first two slices, our
algorithm oversegments significantly more than the morphing algorithm, although
they both cover the whole manual contours. However, for the next two slices,
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Our Algorithm Morphing
M1(%) M2(%) M3(%) M1(%) M2(%) M3(%)

Slice 1 100.00 0.00 33.56 97.32 2.68 12.08
Slice 2 100.00 0.00 49.06 91.20 8.81 7.55
Slice 3 94.74 5.26 20.84 76.84 23.16 20.53
Slice 4 87.68 12.32 30.79 67.78 32.23 29.38

Table 2. Comparison of the integrals M1, M2, and M3 for seg-
mentations in Figure 8

the morphing algorithm gives much less overlap with the manual contours (M1),
whereas our algorithm still gives 90% overlap with slightly larger over-segmented
areas. Furthermore, our algorithm seems to produce better results in the subsequent
images both in terms of capturing the evolution of the organ boundary and in the
general shape, compared with oncologists’ segmentations. In particular, in the last
frame of the sequence, the morphing result bears no resemblance to the manually
segmented bladder boundary, while the segmentation from our algorithm appears
to be closer to the manual segmentation.

Figure 9. Morphing of active contour for fine-tuning of the joint segmentation.

We further note that the segmentation contours from our algorithm capture the
concave curve near the bottom tip of the bladder where it is adjacent to the prostate
(see second and third images in bottom row of Figure 8). The corresponding con-
tours from the same images in the top row remain the same and fail to capture the
evolution of the boundary as suggested by the manual segmentation.

It is unclear why a sideways deviation appears from the manual segmentation
from the third to the fourth frame in both algorithms. This phenomenon may be
attributed to the strong gradient flow in the lateral direction during the morphing
process.

In this test case, the effect of morphing is shown in Figure 9. In both panels,
solid lines are the final segmentation after morphing of the contours from the joint
segmentation, dashed lines are the segmentation before the morphing, and dash-
dotted lines are the oncologist’s manual segmentation.
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Figure 10. Kidney: Top: Segmentation with morphing active
contours. Bottom: Segmentations with our algorithm.

The last example is of a segmentation of a left kidney; the results are shown in
Figure 10. Here we zoom on the part of the images that contains the kidney. Again,
we show the four consecutive segmentations that follow the first image with a given
manual segmentation. The top images show the results obtained by the morphing
active contour algorithm. The bottom images show the results obtained with our
algorithm. In this case, we have no reference manual segmentation by a physician
that we can compare with; we generated the initial manual segmentation ourselves.
As with the liver, the background is noisy and structures around the kidney are
likely to be included by conventional level set algorithms. This is probably why
the observed contours from the morphing algorithm in the top images of Figure 10
are wiggly. In contrast, the results from our algorithm are quite smooth and do
not suffer from the noisy surroundings as much. We also note that the results from
morphing active contours deviate from the obvious kidney boundary near the tip
of the organ in the last two images. This is not the case with our algorithm.

6. Conclusion. In this work, we present a new algorithm for the segmentation of
target objects in CT scans. This algorithm combines the conventional morphing
active contour algorithms and the more recent joint registration and segmentation
algorithm. Given a sequence of images and a segmented object in the first image,
we use our algorithm to segment the same object in the consecutive images. We
find that our algorithm accurately segments at least three consecutive slices in a
sequence, and the quality of the segmentation deteriorates slightly for the fourth
slice in both examples in section 5. Thus, we can reiterate this segmentation process
for the whole sequence, provided we have physicians’ manual contours every several
slices in the sequence and our algorithm can automatically fill the gap. For this
paper, we focus more on the new algorithm than on optimizing its performance.
We note that segmenting a slice usually requires a few minutes, and the variation
in run time is mostly due to the convergence of the joint segmentation component.
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We demonstrated the results obtained this way in several test cases, and showed
that in most test cases the approach performs better than morphing active contours
algorithms. It is noticeable that in all test cases our algorithm produced a segmen-
tation consistent with the manual segmentation for four consecutive images. This
is not the case with the traditional algorithms we checked against the same data.
From our quantitative comparison between the traditional algorithm and our algo-
rithm, it is evident that segmentation from morphing alone scarcely matches the
manual contour in most slices, whereas our algorithm generates segmentation that
still resembles the manual contours in terms of shape and of the overlapped area.
We would like to emphasize that even though we demonstrated the segmentation
of one organ at a time, nothing in the algorithm limits one from simultaneously
segmenting several objects.

Currently, we are focusing on estimating the error propagation in our algorithm
when applied to various different cases. Some de-noising preprocessing may be
necessary to help control the error propagation. We also explore the possibility of
combining forward and backward image flows to refine the segmentation.

In most of our test cases, whenever a slight deviation between the automatic
and the manual segmentations appeared, the automatic segmentation tended to
generate a contour that enclosed the manual contour. We do not know the source
of this seemingly consistent behavior. However, we would like to note that for
the purpose of planning radiotherapy treatment, over-segmenting an organ is much
better than under-segmenting that organ (whether that organ should be radiated
or protected).

The ideas presented here are not limited to CT scans, and we expect them to
work equally well with other types of medical images, such as MRI images. We
conclude by noting that in this work we have not addressed efficiency issues, and
we consider them a fundamental topic for future research.

Acknowledgments. The work of D. Levy was supported in part by the NSF under
Career Grant DMS-0133511.

REFERENCES

[1] M. Bertalmio, Processing of flat and non-flat image information on arbitrary man-
ifolds using partial differential equations, PhD dissertation, University of Minnesota,
2001.

[2] M. Bertalmio, G. Sapiro, and G. Randall, Morphing active contours, IEEE Trans. Pattern
Anal. and Machine Intelligence 22, no. 7 (2000), pp. 733-737.

[3] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Int. J. Comp. Vision
22, no. 1 (1997), pp. 61-79.

[4] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Trans. Image Proc 10,
no. 2 (2001), pp. 266-277.

[5] Y. Chen, H. D. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, and E. A. Geiser,
Using prior shapes in geometric active contours in a variational framework, Int. J. Comp.
Vision 50 no. 3 (2002), pp. 315-328.

[6] D. Cremers and C. Schnorr, Statistical shape knowledge in variational motion seg-
mentation, Image and Vision Computing 21 (2003), pp. 77-86.

[7] J. S. Duncan and L. H. Staib, Image processing and analysis at ipag, IEEE Trans. Med.
Imag. 22 no. 12 (2003), pp. 1505-1518.

[8] F. Gibou, D. Levy, C. Cardenas, P. Liu, and A. Boyer, PDE-based segmentation for
radiation therapy treatment planning (submitted)

[9] M. Moelich and T. Chan, Joint segmentation and registration using logic models,
UCLA CAM Report 03-06 (February 2003).



96 Y.-N. YOUNG AND D. LEVY

[10] N. Paragios, A level set approach for shape-driven segmentation and tracking of
the left ventricle, IEEE Trans. Med. Imag. 22, no. 6 (2003), pp. 773-776.

[11] N. Paragios, M. Rousson, and V. Ramesh, Non-rigid registration using distance func-
tions, Comp. Vision and Image Unders. 89(2003), pp. 142-165.

[12] B. Sandberg and T. Chan, Logic operators for active contours on multi-channel
images, UCLA CAM Report 02-12 (March 2002).

[13] G. Sapiro, Geometric partial differential equations and image analysis, Cambridge
University Press, Cambridge, 2001.

[14] B. C. Vemuri, J. Ye, Y. Chen, and C. M. Leonard, Image registration via level-set
motion: Applications to atlas-based segmentation, Medical Image Analysis 7(2003),
pp. 1-20.

[15] L. Vese, T. Chan, A multiphase level set framework for image segmentation using
the Mumford and Shah model, J. Computer Vision 50, no. 3 (2002), pp. 271-293.

[16] A. Yezzi, L. Zollei, and T. Kapur, A variational approach to joint segmentation and
registration, in Proc. IEEE Conf. on Comp. Vision and Pattern Recogn., 2001.

[17] A. Yezzi, L. Zollei, and T. Kapur, A variational framework for integrating segmenta-
tion and registration through active contours, Medical Image Analysis 7(2003), pp.
171-185.

Received on July 8, 2004. Revised on Aug. 30, 2004.

E-mail address: yyoung@stanford.edu,yyoung@njit.edu

E-mail address: dlevy@math.stanford.edu


