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Abstract

Weakly nonlinear hexagon convection patterns coupled to mean flow are investigated within the framework of coupled
Ginzburg–Landau equations. The equations are in particular relevant for non-Boussinesq Rayleigh–Bénard convection at
low Prandtl numbers. The mean flow is found to: (1) affect only one of the two long-wave phase modes of the hexagons,
and (2) suppress the mixing between the two phase modes. As a consequence, for small Prandtl numbers the transverse and
the longitudinal phase instability are expected to occur in sufficiently distinct parameter regimes that they can be studied
separately. Through the formation of penta–hepta defects, they lead to different types of transient disordered states. The
results for the dynamics of the penta–hepta defects shed light on the persistence of grain boundaries in such disordered states.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Roll patterns in Rayleigh–Bénard convection of a fluid layer heated from below have been explored extensively
over the years as a paradigmatic system to study the succession of transitions from ordered to disordered and
eventually turbulent states (for a recent review, see [1]). For small convection amplitudes a weakly nonlinear
description in terms of a Newell–Whitehead–Segel equation [2,3] would be expected to be sufficient at least for
almost straight roll patterns. However, this is true only in the limit of large Prandtl numbers. For small Prandtl
numbers, curved roll patterns drive a mean flow that induces an important non-local coupling of the rolls due to
the incompressibility of the fluid. It is the origin of the oscillatory and the skew-varicose instability [4]. Since the
Newell–Whitehead–Segel equation does not capture the mean flow it has been extended to include an equation for
a large-scale vertical vorticity mode [5].

A particularly interesting aspect of the mean flow is that it can induce persistent dynamics and disordered patterns.
Thus, it has been identified as the driving force for the persistent creation and annihilation of dislocations that has
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been observed [6–9]. Arguably, the most interesting state that is due to the mean flow is the spiral-defect chaos
observed in large-aspect ratio experiments on thin gas layers [10]. It is characterized by the appearance of various
types of defects in the pattern with small rotating spirals being the ones that are visually most striking. The onset
of spiral-defect chaos depends strongly on the Prandtl number, indicating that mean flows play an essential role in
maintaining this state [11–14].

Motivated by the strong impact of mean flows on roll convection patterns, we consider in this paper the effect of
such flows on the stability and dynamics of hexagonal patterns. Hexagonal patterns are commonly found in spatially
extended non-equilibrium systems such as non-Boussinesq Rayleigh–Bénard convection (e.g. [15]), Marangoni
convection (e.g. [16]), Turing structures in chemical systems [17], crystal growth (e.g. [18]), and surface waves on
vertically vibrated liquid or granular layers (Faraday experiment) [19,20]. Not in all of these systems mean flows
of the type discussed above arise. Clearly, they are relevant for the small Prandtl numbers in gas convection in very
thin layers [10]. Interestingly, the skewed-varicose instability and a (transient) state similar to spiral-defect chaos
have been observed also in vertically vibrated granular layers [21,22]. Since in convection they are a signature of
the importance of mean flow, it may also be relevant in vertically vibrated fluids. We focus in this paper on patterns
arising from a steady bifurcation, as is the case in convection. Immediately above onset, parametrically excited
standing waves like those arising in the Faraday experiment behave in many respects like patterns that are due to a
steady bifurcation (e.g. [23]). Our results may therefore, also be relevant for hexagon patterns in suitable Faraday
experiments.

In the absence of mean flows the stability of hexagonal patterns has been studied in detail in the weakly nonlinear
regime. Starting from three coupled Ginzburg–Landau-type equations for the amplitudes of the rolls that make up
the hexagonal pattern two coupled phase equations have been derived that describe the dynamics of long-wave
deformations of the hexagon patterns [24–27]. In these theoretical analyses two types of long-wave instabilities
have been identified, a longitudinal and a transverse mode, with the longitudinal mode being relevant only for
Rayleigh numbers very close to the saddle-node bifurcation at which the hexagons first appear. These long-wave
perturbations are captured by phase equations even in the strongly nonlinear regime [27]. In a more detailed
analysis also perturbations with arbitrary wavenumber and simulations of the nonlinear evolution ensuing from the
instabilities have been included [28]. The instabilities typically lead to the formation of penta–hepta defects (PHDs)
[29–32]. Specifically, for convection at large Prandtl numbers driven by a combination of buoyancy and surface
tension the stability of hexagons and their dynamics has been investigated in [33]. Experimentally, the side-band
instabilities of hexagonal convection patterns have not been studied in detail. A contributing factor has been that
controlled changes in the wavenumber of the pattern are considerably more difficult to effect than in systems like
Taylor-vortex flow, where detailed agreement between experiment and theory has been achieved (e.g. [34,35]).
Recently, however, it has been possible to use localized heating as a printing technique for convection patterns
[36,37], which allowed a detailed analysis of the stability of hexagonal patterns in Bénard–Marangoni convection
[36].

In our analysis of the linear stability of hexagons coupled to a two-dimensional mean flow, we find that the mean
flow couples only to one of the two long-wave modes. As a consequence, for sufficiently small Prandtl numbers
each of the two long-wave instabilities dominates in a separate, experimentally accessible parameter regime. The
nonlinear evolution of both instabilities leads to the formation of defects. We study their motion and briefly touch
upon its impact on disordered patterns and grain boundaries.

This paper is organized as follows: first we formulate the problem extending previous work on the mean flow
generated by roll convection [38,39]. We then study the stability of the hexagonal pattern with respect to side-band
perturbations (Section 2). In Section 3, the nonlinear evolution of the side-band instabilities is investigated numer-
ically, emphasizing the different evolution of the longitudinal and the transverse phase modes that destabilize the
hexagons. There, we also study the transition from hexagonal to roll patterns triggered by the side-band instabilities.
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In Section 4, we investigate numerically the dynamics of defects and of grain boundaries in the presence of mean
flow. Section 5 gives some conclusions.

2. Formulation and stability analysis

2.1. Formulation

The interaction between weakly nonlinear convection rolls and the mean flow generated by them has been
investigated for Rayleigh–Bénard convection with both no-slip and stress-free boundary conditions at the top and
bottom plate [38,39]. Expanding the fluid velocity in terms of the complex amplitudeA of the convection rolls and
the real streamfunctionQ for the two-dimensional mean flow as(ε � 1)

v(x̃, ỹ, z̃, t̃ ) = εA(x, y, t)eiqcx̃vq(z̃) + ε2{ �∇ × (Qẑ)f (z̃)} + h.o.t., (1)

the extended Ginzburg–Landau equation forA andQ was derived, which to leading order is given by

∂tA = (µ + (∂x − iλ∂2
y )

2 − |A|2)A − is1A∂yQ + h.o.t., (2)

M(Q) = 2q1(∂x − iλ∂2
y )∂y |A|2 + h.o.t., (3)

whereλ ≡ ε/2qc with ε the supercriticality parameter andqc the critical wavenumber. For no-slip boundary
conditionsM(Q) = ∇2Q [38], whereasM(Q) = (q2∇2∂t − ∇4)Q for the stress-free case [39]. To leading order,
the mean flow is driven by variations in the magnitude of the convective amplitude and couples back through the
advective term is1A∂yQ = is1AVx , whereVx is thex-component of the mean flow. At higher orders a term of the
form V · ∇A would arise as well.

For the description of hexagonal convection patterns coupled to the mean flow the treatment has to be extended
to include rolls in other directions than thex-axis. The amplitudesAi , i = 1,2,3, correspond then to rolls with
wavevectorqcn̂i . The advection term iA∂yQ in Eq. (2) is generalized as iAj(τ̂j · ∇)Q, whereτ̂j is the unit vector
perpendicular tônj . We complete the extension of Eqs. (2) and (3) from roll to hexagonal patterns by adding
non-Boussinesq quadratic terms. The minimal set of equations describing hexagons coupled to a mean flow then
reads for the no-slip case

∂tAj = (µ + (n̂j · ∇)2 − |Ai |2 − ν(|Aj−1|2 + |Aj+1|2))Aj + A∗
j−1A

∗
j+1 − iβAj (τ̂j · ∇)Q, (4)

∇2Q =
3∑

i=1

2(n̂i · ∇)(τ̂i · ∇)|Ai |2 (5)

with cyclic permutation onj . HereQ has been rescaled to absorb the coefficientq1(β = s1q1). The Newell–
Whitehead–Segel operator in Eq. (2) reduces to(n̂j · ∇)2 in the above equations as we adopt isotropic scaling for
the underlying hexagonal patterns. Such isotropic scaling can lead to degeneracies in certain growth rates like that
of the zigzag instability for roll convection patterns (e.g. [40,41]). For the hexagonal patterns, this is, however, not
the case.

It has to be pointed out thatQ ∝ O(A2), which makes the mean flow contribution O(A4). In a systematic derivation
of (4) and (5) it therefore, represents a higher-order correction term, which in the scaling employed in (4) and (5) is
reflected inβ being small. Formally, the mean flow is of the same order as the lowest-order nonlinear gradient terms,
which capture the wavevector dependence of the quadratic resonant termA∗

j−1A
∗
j+1. Their influence on the stability

of hexagons has been studied previously [26,42,43]. Our goal is to focus on the mean flow, which in contrast to the
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nonlinear gradient terms induces anon-local interaction. In this study, we therefore neglect the nonlinear gradient
terms. We note that the coupling coefficientβ of the mean flow grows with decreasing Prandtl number. Based on
the calculation of the coupling coefficient in the Boussinesq case [38], we expect that for Prandtl numbers of order
1 the mean flow becomes relevant sufficiently close to threshold for hexagons to be preferred over rolls [15].

The cubic coefficientν decreases monotonically with Prandtl number fromν ∼ 2.0 for Pr = 0.5 to ν ∼ 1.5 for
Pr ∼ 10 [15,44]. For the numerical results in this paper we fixν = 2.

2.2. Stability analysis

We conduct a linear stability analysis of the hexagonal pattern in the long-wave approximation following the
procedures in [25]. The amplitudes are perturbed around a hexagon pattern:

Aj = R0 eiqn̂j ·(x,y)(1 + rj + iφj ), j = 1,2,3, (6)

whereR0 ≡ (1 +
√

1 + 4(µ − q2)(1 + 2ν))/2(1 + 2ν) is the amplitude of the stationary solution with reduced
wavenumberq, andrj andφj are the amplitude and phase perturbations, respectively. We also defineuandv as in [25]

u = R2
0(1 − ν) + R0, v = 2R2

0(1 + 2ν) − R0. (7)

Herev = 0 corresponds to the saddle-node bifurcation at which the hexagons come into existence (µSN = q2− 1
4(1+

2ν)), whileu = 0 is where hexagons become unstable to the mixed mode solution(µMM = q2 + (ν +2)/(ν −1)2).
Bothu andv have to be greater than zero for hexagons to be stable. Upon substituting Eq. (6) into Eqs. (4) and (5)
and introducing super-slow scales,∂t → δ2∂t and∇ → δ∇ with |δ| � 1, we can adiabatically eliminate the pertur-
bations in the amplitude and in the total phaseΦ ≡ φ1 +φ2 +φ3 in terms of the two translation phase modesφx ≡
−(φ1+φ2) andφy ≡ (φ2−φ3)/

√
3. The mean-flow amplitudeQ can then be expressed in terms of�φ = (φx, φy) as

Q = −3R2
0q

2u
(−êz · ∇̂ × �φ), (8)

and one obtains the phase equation

∂t �φ = D⊥∇̂2 �φ + (D‖ − D⊥)∇̂(∇̂ · �φ) − 3qβR2
0

2u
∇̂ × (∇̂ × �φ), (9)

whereD‖ andD⊥ are the longitudinal and transverse phase diffusion coefficients for the hexagons in the absence
of mean flow [24,26,45].

The phase equation (9) allows a decomposition of the phase vector�φ into a longitudinal (curl-free) mode�φl

(satisfyingêz · ∇̂ × �φl = 0) with growth rate

σl = k2

2

[
−3

2
+ q2

u
+ 4q2

v

]
, (10)

and a transverse (divergence-free) mode�φt (satisfying∇̂ · �φt = 0) with growth rate

σt = k2

2

[
−1

2
+ q2

u
− 3qβR2

0

u

]
. (11)

As expected from Eq. (8), the mean flow affects only the transverse mode. The sign ofβ determines whether
the mean flow destabilizes the transverse mode for positive or for negativeq. We also observe that the stability
boundaries are invariant under the transformation(q, β) → (−q,−β). For roll convection with no-slip boundary
conditionsβ is always negative [38].
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The stability boundaries for infinite Prandtl number [28] (no mean flow,β = 0) are reviewed in Fig. 1a. It is
worth noting that the regime in which the longitudinal mode (thick solid line) is the relevant destabilizing mode is
typically extremely small (below the dash-dotted line in Fig. 1a) and it is very difficult to investigate that instability
experimentally. In fact, even in numerical simulations of (4) withβ = 0, we found it difficult to separate the
dynamics of the two modes (see also [28]).

Fig. 1. Stability boundaries for infinite Prandtl number (a) and finite Prandtl numbers (b) and (c).β = 0 in (a),β = −0.2 in (b) andβ = −3
in (c). Thin solid line is for the saddle-node bifurcation, thin dashed line for transition of hexagons to mixed mode solution, thick solid line
for longitudinal mode, thick dotted line for transverse mode. In (a) thick dashed line for equal-energy line for hexagons and rolls, and thick
dash-dotted line for cross-over from longitudinal to transverse mode. Forβ �= 0 (4) and (5) are non-variational and no equal-energy line exists.
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Fig. 2. (a) Anglesψ andθ ; (b) angleψ (between the phase vector�φ and the perturbation wavevector�k) as a function of the angleθ (between�k
and�n1) for µ = 0.5 andq = 0.5. The thin lines are for coupling strengthβ = 0, and−0.2 for the thick lines. The solid lines are fork = 0, the
dashed lines fork = 0.192, and the dash-dotted lines fork = 0.224.

Fig. 1b and c shows how the stability boundaries are altered by the mean flow forβ = −0.2 and−3.0, respectively.
As discussed before, only the transverse mode (thick dotted line) is affected by the mean flow. It becomes destabilized
for βq < 0 and stabilized forβq > 0. For larger|β| the stabilization can be strong enough to render the longitudinal
mode the only relevant destabilizing mode forq < 0 over the whole range ofµ. Thus, for sufficiently small Prandtl
numbers the two destabilizing phase modes occur on different sides of the stability balloon suggesting that a
detailed comparison of the two instability modes should be possible in experiments [36]. In Section 3, we discuss
the noticeably different nonlinear behavior arising from the two instabilities.

For finite perturbation wavenumbers the two phase modes are no longer purely transverse or longitudinal. Instead
they can be characterized by the angleθ between the perturbation wavevector of the fastest growing modes and
�n1. For the ‘wide-splitting’ modesθ = nπ/3, whereas for the ‘narrow-splitting’ modesθ = π/6 + nπ/3 with n

an integer [28]. Alternatively, the mixing between the transverse and the longitudinal modes in the phase eigen-
modes1 can be quantified by the angleψ between the phase vector�φ and the wavevector�k of the perturbation
eigenmode,

ψ ≡ arctan

(
êz · ∇̂ × �φ

∇̂ · �φ

)
, (12)

as illustrated in Fig. 2a. For the transverse modeψ = π/2 and for the longitudinal modeψ = 0.
Fig. 2b shows the phase angleψ for various amplitudes of|�k| and two values ofβ. We first note that the

wide-splitting and narrow-splitting modes are close to the pure transverse and longitudinal modes, respectively.
In fact, as the perturbation wavenumber goes to 0 the narrow-splitting mode turns into the longitudinal mode and
the wide-splitting mode into the transverse phase mode. Comparing the phase angleψ for β = 0 (thin lines)
andβ = −0.2 (thick lines) for the same value of the perturbation wavenumber|�k| indicates that the mean flow
suppresses mixing between transverse and longitudinal modes.

1 The mixing of the two phase modes also introduces complex eigenvalues. This occurs, however, only in parameter regimes well beyond the
stability limit.
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Fig. 3. The thin solid line is the fifth-order correctionδψl = δψt without mean flow. The thick lines give the leading-order contribution to the
mean flow correction to the transverse mode(δψ1

t ) (thick dash-dotted line) and to the longitudinal mode(δψ1
l ) (thick dashed line).

To investigate the generality of the suppression of mixing due to mean flow, we go to higher order in the long-wave
expansion. To obtain a systematic description to fifth order of both phase modes we need to expand around the
codimension-two point at which both growth rates,σt and σl , vanish to cubic order (cf. Eqs. (10) and (11)).
The derivation of the fifth-order phase equation for weak mean flow is given in Appendix A ((A.11) and (A.12)).
While to third order the phase equation is still local, at fifth-order non-local terms appear. Note that in contrast to
the non-local phase equation obtained in [25] the origin of the non-locality in (A.11) and (A.12) is the non-local
interaction generated by the mean flow, while in [25] non-locality arose from the elimination of one of the two phase
modes. As expected, the higher-order terms break the isotropy of the cubic truncation, reflecting the fact that the
phase equation describes perturbations of a pattern with hexagonal symmetry. The anisotropy leads to modifications
of the eigenmodes which we now discuss in terms of the phase angleψ .

Fig. 3 shows the correctionsδψt ≡ ψ −π/2 andδψl ≡ ψ − 0 to the phase angleψ arising from the fourth-order
derivatives and from the mean flow. In the absence of mean flow, the correction to the phase angle is the same
for both phase vectors (thin solid line), indicating that the two modes remain orthogonal to each other to that
order, but they are not purely transverse or longitudinal any more. The correction due to mean flow is expanded
in β, δψβ

l,t = βδψ1
l,t + O(β2). Here we plot only the leading-order termsδψ1

t (thick dash-dotted line) andδψ1
l

(thick dashed line). Forβ < 0 the sign of the mean flow correction,βδψ1
l,t, is opposite to that from the fourth-order

derivative without mean flow. Thus, the mean flow is seen to suppress the deviation of the modes from the transverse
and longitudinal orientation, consistent with our findings for the finite wavenumber perturbations.

3. Nonlinear evolution of the side-band instabilities

We now present results from numerical simulations of Eqs. (4) and (5) using a parallel pseudo-spectral code.
In Section 3, we first simulate the system for lowµ to compare the nonlinear evolution of the transverse and
longitudinal side-band instabilities. We then discuss the impact of the mean flow on the competition between rolls
and hexagons for largerµ.
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Fig. 4. Zero contour lines of the real part of the amplitudeA2 (solid lines) and of the imaginary part ofA2 (dashed): (a) only the longitudinal
mode is destabilizing(q = −0.48); (b) only the transverse mode is destabilizing(q = 0.17). Only a quarter of the domain is shown.

3.1. Low µ: transverse vs. longitudinal modes

Without mean flow the nonlinear evolution of the two side-band instabilities of hexagon patterns has been
studied numerically in some detail by Sushchik and Tsimring [28]. There it is found that a detailed comparison of
the nonlinear evolution between wide- and narrow-splitting is extremely difficult as the range over which only the
narrow-splitting (longitudinal) mode is destabilizing is very small. As discussed in Section 2.2, the mean flow couples
only to the transverse/wide-splitting instability and for sufficiently small Prandtl number suppresses it completely
for βq > 0. This makes it possible to compare the two instabilities in detail under comparable conditions. Figs. 4–6
show a comparison of the evolution of the two instabilities forµ = 0.5, ν = 2, andβ = −3. The system size
is L = 104 and the numerical resolution is 256× 256. The wavenumbers of the initial, slightly perturbed regular
hexagon patterns are chosen carefully to obtain the same linear growth rates for both modes. In particular, for
q = −0.48 (q = 0.17) only the longitudinal (transverse) mode is destabilizing (cf. Fig. 1).

Fig. 4 shows the early evolution of the instabilities in terms of the contour lines of the real and imaginary parts
of amplitudeA2. In (a) only the longitudinal mode destabilizes the pattern. It induces compressions and dilations

Fig. 5. Number of defects as a function of time for the longitudinal case (solid line) and transverse case (dashed line).
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Fig. 6. Reconstructed temperature for the longitudinal mode (left panel,q = −0.48) and the transverse mode (right panel,q = 0.17) att = 1750.

of the pattern. In (b) it is the transverse mode that destabilizes the pattern; it shears the amplitudes. Both lead to the
formation of defects. However, the defects induced by the longitudinal mode are typically aligned along the rolls
and form where the bulges are maximal.

The temporal evolution of the number of defects is shown in Fig. 5. For both modes, we definet = 0 when the
first defect is formed. Both modes having the same growth rate it is not surprising that in both cases the defect
number grows on a similar time scale. In fact, both reach roughly the same number of defects at about the same
time t ≈ 50. In both cases the subsequent ordering of the pattern appears to occur in two stages, characterized by an
initial rapid annihilation of defect pairs and a later much slower phase. In the longitudinal case the defect number
decreases in large steps, which are associated with the annihilation of strings of defects that are roughly aligned
with the rolls, whereas no such steps are visible in the transverse case. The overall decay is substantially slower for
the pattern induced by the transverse instability. This had also been found in the absence of mean flow [28].

Snapshots of the reconstructed patterns at the final timet = 1750 are shown in Fig. 6. Only a quarter of the
whole system is shown. In the longitudinal case the defect density is already very low and the defects are essentially
isolated from each other. In the transverse case, however, they are mostly part of grain boundaries that separate
domains of hexagons with slightly different orientation.

To quantify the evolution of the amount of disorder in the orientation of the hexagons we determine the orientation
of the local wavevectorqj relative to the roll direction̂nj as defined by the angleαj :

αj ≡ arctan

( �qj · τ̂j
�qj · n̂j

)
, �qj ≡ Re

(
−i �∇Aj

Aj

)
for j = 1,2,3. (13)

In Fig. 7, we plot the probability distribution function (PDF) of the orientation angleα1 as a function of time for
the cases shown in Figs. 4 and 5. Again, timet = 0 is where the first dislocation occurs, and we have truncated the
large peaks (aroundα1 = 0) at early times so that more structures can be discerned at later times. Similar PDFs are
found for the other two amplitudes, as well. For the longitudinal mode the PDF is centered aroundα1 = 0 from
the beginning to the end, with the peak broadening aroundt = 0 when the first few defects appear. Thus, for all
times there is only a single domain and the hexagons remain essentially aligned with their initial orientation. In the
transverse case, however, the initial peak atα1 = 0 quickly decays and gives way to two peaks of comparable size.
This occurs around the time when the maximum number of defects is reached. The bi-modal PDF indicates that
the transverse mode predominantly induces domains of hexagons of two different orientations, which then co-exist
for a long time. The clear separation of the two destabilizing modes in terms of the associated stability boundaries
suggests that this difference in the nonlinear evolution of the instabilities should be accessible experimentally.



Y.-N. Young, H. Riecke / Physica D 163 (2002) 166–183 175

Fig. 7. Evolution of the probability distribution ofα1: the angle between�k1 andn̂1 = x̂ for the longitudinal (left) and the transverse mode (right).

3.2. High µ: hexagons vs. rolls

In the absence of mean flow, the competition between uniform hexagons and rolls is governed by the energy
difference between them. For a givenq, hexagons have lower energy than rolls forµ lower than a threshold value
µth(q) [28], while rolls are energetically favored aboveµth. This boundary is indicated by the dashed line in Fig. 1a.
Below the dashed line, outside the stability balloon, the unstable transverse and longitudinal modes grow and evolve
towards a hexagon of different wavenumbers. Above this line, rolls appear during the transients and eventually
replace the hexagon.

Due to the lack of a Lyapunov functional for Eqs. (4) and (5) no simple energy arguments for the predominance of
rolls or hexagons can be given and we resort to numerical simulations to locate the boundaryµth between hexagons
and rolls in the presence of mean flow. Table 1 listsµth for q = ±0.6 for different values ofβ. For example, for
β = −0.1 andq = 0.6 we find rolls as the final state atµ = 1.45 (Fig. 8, left panel), while a mixed state of rolls
and hexagons is found atµ = 1.425 (Fig. 8, right panel). Thus, the transition value inµ atq = 0.6 forβ = −0.1 is
between 1.425 and 1.45. The enhanced instability of the transverse mode forq = 0.6 leads apparently to an earlier
transition to rolls when the Prandtl number is decreased. At this point it is not clear why the converse is not the case
for q = −0.6.

Table 1
Competition between rolls and hexagons forq = ±0.6 for differentβ. Forµ > µth side-band instabilities of hexagons lead to rolls rather than
hexagons

β µth (q = 0.6) µth (q = −0.6)

0 1.5 1.5
−0.1 1.43 1.5
−0.2 1.35 1.5
−1.24 1.25 1.5
−3 1.1 1.5
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Fig. 8. Reconstructed patterns from simulating Eqs. (4) and (5) forβ = −0.1 andq = 0.6. On the left,µ = 1.425 att = 2000, andµ = 1.45
on the right panel at the same time.

4. Effect of mean flow on motion of defects

In this section, we study the effect of the mean flow on the motion of a PHD, which is a bound state of two
dislocations in two of the three amplitudes. For large Prandtl number, where the mean flow is negligible, the
far-field solution of a steadily moving PHD has been calculated [32]. We study the general case with mean flow
numerically by embedding two PHDs in the system as initial conditions and measure their velocity as a function of
β andq for fixedµ = 1 andν = 2.

The numerical resolution is 256× 256 in a system of sizeL = 400 and the time step is fixed at 0.1 for most of
the results presented in this section. To satisfy the periodic boundary conditions, we place two PHDs of charges
(0,+1,−1) and(0,−1,+1) in the computational domain, i.e. each PHD consists of two dislocations of opposite
charges in the amplitudesA2 andA3. We also apply a circular ramp atR = 0.4L, beyond which the phase is set to
a constant [31]. The interaction between pairs of PHD is characterized by the numberN ≡ ∑3

i=1 δ1
j δ

2
j , whereδ1(2)

j

is the charge of the first (second) PHD in thej th amplitude [32]. In our simulationsN = −2 and the PHDs attract
each other. Their interaction decreases with distance and we find that it becomes negligible for distances larger than
300 (forβ = 0 andq = 0 the interaction-induced velocity is then belowv = 0.001). Thus in the following, we
place the two PHDs at least at a distance of 300 apart in the initial configuration for the velocity measurement of an
individual PHD.

In the absence of mean flow, each independent PHD is found to move at a constant velocity, which vanishes at
q = 0 [31,32]. In the presence of mean flow, we also find that isolated defects move at a constant velocity. It is
shown in Fig. 9 as a function ofβ for q = 0. The range of the linear scaling with respect to the coupling strength
indicates that, for smallβ, the contribution of the mean flow to the PHD velocity is purely additive via the advective
term iβA(τ̂ · ∇)Q and that the amplitudesAi of the defect solution are only weakly affected by the mean flow.
However, as|β| increases, the defect velocity deviates significantly from the linear scaling. This is analogous to
the effect of mean flow on dislocations in roll pattern [47]. Also, for larger|β| the mean flow structure becomes
distorted near the defect as shown in Fig. 10. The mean flow consists of two pairs of vortices, and is almost zero
away from the defect. While forβ = −0.2 (a) the two vortex pairs are of comparable strength, the pair on the
right is much stronger than that on the left whenβ is decreased toβ = −1.4 (b). This change occurs smoothly
in β. When the Prandtl number is decreased further so thatβ is below−2 the stability limit comes very close to
the background wavenumberq = 0 of the pattern and the PHDs trigger the formation of additional defects in their
vicinity.
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Fig. 9. Defect velocity as a function of the coupling strengthβ for q = 0 andµ = 1. The defect speed scales as∼ β for small|β| (large Prandtl
number), which in turn leads to a Prandtl number scaling∼ Pr−1, just as in the case of rolls [46] for large Prandtl number.

The defect velocity also depends on the wavevectors�qi of the three modes making up the hexagon pattern [31].
More specifically, within Eqs. (4) and (5) it depends only on the projections�qi · n̂i . Fig. 11 shows the defect velocity
as a function ofq ≡ �qi · n̂i for β = 0 (dashed line) andβ = −0.2 (solid line). The mean flow shifts the defect
velocity to more positive values for allq, implying that the wavenumberqst at which the defect remains motionless
is shifted fromqst = 0 to negative values. For situations in which the evolution from disordered to more ordered
patterns is dominated by defects this suggests that the wavenumber of the final state is in general not the critical
wavenumber or that with the maximal growth rate but that corresponding to stationary PHDs, which depends on
the Prandtl number through the mean flow.

In various simulations of the nonlinear evolution of the instabilities of the hexagon pattern, we found disordered
states characterized by grain boundaries between domains of hexagons of different orientations that moved exceed-
ingly slow. An example of such a long-lived disordered state and the associated mean flow is shown in Fig. 12a and
b, where the spatial structure of such long-lived grain boundaries and the corresponding mean flow is depicted for
µ = 1.2, q = 0.6 andβ = −1.24. Here the resolution is 128× 128 for a system size ofL = 42.

Fig. 10. Mean flow structure around a PHD(q = 0) for: (a) β = −0.2 and (b)β = −1.4. The solid lines (dashed lines) are the zero contour
lines for the real (imaginary) parts of the second amplitude.
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Fig. 11. Defect velocity as a function of wavenumberq for µ = 1,β = 0 (dashed line) andβ = −0.2 (solid line).

To identify the origin of these slow dynamics we performed simulations starting from patterns with two straight
grain boundaries separating two hexagon patterns of different orientation rotated byπ/2 relative to each other. For
certain magnitudes of the initial wavevectors the grain boundaries did not annihilate each other but persisted for an
exceedingly long time. Fig. 13a shows such an initial condition with�q2 = 0.2. A contour plot of the histogram of
the local wavevector of each of the three modes in the initial condition (Fig. 13a) is shown in Fig. 14a. Solid lines
pertain toq1, dashed lines toq2, and dash-dotted lines toq3. Despite the large magnitude of the reduced wavevector
in the center domain the pattern is still linearly stable since the longitudinal component of the wavevector vanishes,
�qj ·n̂j = 0. Within (4) and (5) only this projection enters the stability conditions. Without(β = 0)and with(β = −2)
mean flow the initial condition evolves to the patterns shown in Fig. 13b and c, respectively, fort = 80 000 and
µ = 0.5. Forβ = 0 simulation beyondt = 80 000 showed little difference in the spatial structure, and the defects
seem to have reached asymptotic, immobile states at the end of the simulations. In theβ = −2.0 case, although
the spectra and the domain sizes remain more of less than the same aftert = 80 000, defects exhibit persistent
lateral motion along the grain boundaries (velocity∼ 4×10−4) throughout the simulation which continues beyond
t = 160 000 and leads to a slightly fluctuating shape of the domains.

The histograms of the local wavevector of the final states depicted in Fig. 14b and c show that without mean
flow all three wavevectors are essentially perpendicular ton̂i implying that individual defects would not move.

Fig. 12. (a) Reconstructed hexagon pattern(qc = 4) at t ∼ 14 000 forβ = −1.24 (Prandtl number∼ 1) andµ = 1.2. The initial condition was
an ordered, unstable hexagon pattern withq = 0.60. (b) Mean flow of the state shown in (a).
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Fig. 13. Zero contour lines of the real and the imaginary part ofA2. Panel (a) is for the initial conditions, and panels (b) and (c) are snapshots at
t = 80 000 forβ = 0 and−2.0, respectively.

In the simulation with mean flow the wavevectors are clearly not perpendicular ton̂i . Instead,�q2 · n̂2 ≈ −0.1
and �q3 · n̂3 ≈ −0.1. In separate simulations we find that forβ = −2 andµ = 0.5 this is the wavenumber at
which individual PHDs do not move,qst = −0.1. The histogram for the third wavevectorq1, however, has peaks at
(qx, qy) = (−0.1,−0.05) and(−0.05,0.6). Thus, the two peaks have different projections onton̂1 and only one of
them agrees withqst. This may be related to the fact thatA1 has no dislocations in the grain boundary. In separate
simulations of individual PHDs with dislocations inA2 andA3, we find that the velocity of the PHD depends only
weakly on the wavenumber of the defect-free component(A1), and over the whole range−0.15< �q1 · n̂1 < −0.05
the PHDs are essentially motionless. Specifically, the magnitude of the velocity is below 5× 10−4 for µ = 0.5,
β = −2, �q2 · n̂2 = −0.1, and�q3 · n̂3 = −0.1.

With and without mean flow, the orientation of the wavevectors in the top and bottom domains differs at the final
time from that of the initial pattern, implying that in these domains the pattern rotated until the projections of their
wavevectors reachedqst. This suggests that, more generally, in the ordering dynamics of hexagons starting from
random initial conditions the orientation of a hexagon pattern within a given domain may rotate in a similar fashion
and in the long time dynamics the orientation of adjacent domains may predominantly be close to the stationarity
condition for PHDs, i.e. the projections of their wavevectors onto a suitably chosenn̂ have the same value and
that value is close toqst. Of course, since our results are based on Ginzburg–Landau equations they only apply

Fig. 14. Wavevector spectra of the complex amplitudes shown in Fig. 13. Panel (a) is for the initial conditions, and panels (b) and (c) are snapshots
at t = 80 000 forβ = 0 and−2.0, respectively.
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to grain boundaries across which the orientation changes only by small amounts. Furthermore, in the truncation
(4) and (5) the higher-order transverse derivatives∇ · τ̂i have been neglected. They are expected to modify the
stationarity condition, since the defect velocity will also depend on the transverse component of the wavevector,
�qi · τ̂i . The independence of the velocity on the transverse component within (4) and (5) is related to the isotropy of
the system. Thus, it is expected that at higher orders the condition�qi · n̂i = qst is replaced by a more complicated,
but qualitatively similar condition suggesting similar behavior for grain boundaries.

5. Conclusion

The importance of mean flows has been noted in a wide range of pattern-forming systems. Various different types
can be distinguished. In systems like binary-mixture convection [48] and in surface waves on liquids with small
viscosity [49] they are driven by traveling waves. In other systems they correspond to a Goldstone mode as is the
case in free-slip convection (e.g. [39,50]) or they arise from a conservation law, e.g. in systems with a deformable
interface [51,52]. In this paper, we have studied the mean flow that is driven in Rayleigh–Bénard convection by
deformations of the convection pattern, which becomes relevant even close to onset for fluids with low Prandtl
number [5,38,39]. The most striking signatures of the mean flow in convection are the skew-varicose instability
and the appearance of spiral-defect chaos. Both have been observed recently also in standing waves in vertically
vibrated granular media [21,22] (the spiral-defect chaos so far only transiently). This suggests that a similar mean
flow may also be relevant in that system.

Extending the usual three coupled Ginzburg–Landau equations to take the vertical vorticity mode into account
[38,39], we find that the band of stable wavenumbers is always limited by one of two long-wave instabilities. In
the absence of mean flow it is always the longitudinal long-wave mode that is the relevant destabilizing mode
immediately above the saddle-node bifurcation at which the hexagons come first into existence, while the transverse
long-wave mode is the relevant mode for larger amplitudes. The Rayleigh number for the cross-over from one to
the other mode depends on the cross-coupling coefficientν, but for realistic values it always occurs very close to
the saddle-node bifurcation. The longitudinal mode is therefore, poorly accessible in the absence of mean flow (e.g.
[28]). Only the transverse phase mode couples to the mean flow and we find that on the low-wavenumber side it
is stabilized for sufficiently small Prandtl numbers to the extent that it is preempted by the longitudinal mode over
the whole range of Rayleigh numbers from the saddle-node bifurcation to the transition to the mixed mode. As
a consequence, for these Prandtl numbers the relaxation from an unstable wavenumber towards the band center
is expected to be qualitatively different depending on whether the stability limits are crossed at the low- or the
high-wavenumber side of the stability balloon.

Our simulations of the nonlinear evolution of the instabilities indicate that, compared to the longitudinal instability,
the transverse instability leads to a considerably larger number of PHDs and to more grain boundaries separating
patches of hexagons that are rotated with respect to each other. While indications of this were also found in the
absence of the mean flow [28], the mean flow can make the distinction clear enough to make it worth addressing
experimentally. To do so, hexagon patterns with a wavenumber away from the band center need to be initiated.
Recently, it has been shown that such initial conditions can, in fact, be prepared by a suitable localized heating of
the fluid [36,47]. Given the striking difference in the transients arising from the instabilities of the two modes it
would be interesting to bring these techniques to bear in this system. It has to be kept in mind that the nonlinear
gradient terms, which have not been kept in our calculations, may reduce the angle between the transverse and the
longitudinal mode and make their distinction less pronounced.

As is the case in roll convection, the mean flow also affects the motion of defects. For the PHDs relevant in
hexagonal patterns, we find that similar to the case of rolls the wavenumber at which the defect is stationary is shifted
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to wavenumbers smaller than the critical one. For coarsening experiments starting from random initial conditions
one may therefore, expect that the eventual wavenumber of the ordered pattern may be reduced correspondingly.
Our simulation suggest that the dependence of the defect velocity on the wavevector allows one to predict which
grain boundaries have a particularly long life time. Furthermore, in the presence of mean flow a persistent drift of the
defects in the grain boundary is observed in the simulations. One may expect that similar to the case of dislocations
in roll patterns [37] the mean flow may allow two PHDs to form stable pairs if the background wavenumber is
between the critical wavenumber and that corresponding to stationary defects.
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Appendix A. Derivation of the nonlinear phase equations to fifth order

To facilitate the analysis we restrict ourselves to the case of weak mean flow and expand in|β| � 1. In the
long-wave limit the codimension-two point is given byq(ct) = q0 + βq1 andR(ct)

0 = R00 + βR01 with

q0 =
√

2ν + 2

4ν
, q1 = 3(ν + 1)

8ν3
, R00 = 1

2ν
, R01 = 3

√
2ν + 2

8ν3
. (A.1)

Here we consider the magnitudeR0 as the control parameter instead ofµ. To obtain explicit expressions for
(q(ct), R(ct)) we consider weak mean flow,β � 1 (cf. Eq. (A.1)). We rescaleX = δx, Y = δy, andT = δ4t . In this
expansionδ andβ are two independent small parameters. Here we expand the amplitudesAj = rj eiqn̂j ·(x,y)+iφj as

rj = R
(ct)
0 + δ2rj2 + δ4rj4 + · · · , (A.2)

φj = δ(φj0 + δ2φj2 + δ4φj4 + · · · ), j = 1,2,3 (A.3)

with R
(ct)
0 given in Eq. (A.1). The mean flow amplitudeQ is expanded accordingly inδ2

Q = δ2Q2 + δ4Q4 + · · · . (A.4)

We substitute the above expansions into Eqs. (4) and (5) and solve them at successive orders ofδ. The mean flow is
driven by amplitude modulations (cf. Eq. (5)) and feeds back to the phasesφj via (4). Thus, at each order we first
solve for the amplitudes and the mean flow in terms of the phases that were determined at the previous orders, and
substitute these solutions into the phase equations to obtain the phases at the next order. AtO(δ2), up to first order
in β

r12 = − 1√
2(1 + ν)

∂xφx − 3

8ν(1 + ν)
(∂xφx − 3∂yφy)β, (A.5)

r22 = − 1

4
√

2(1 + ν)
(∂x −

√
3∂y)(φx −

√
3φy) + 3

8ν(1 + ν)
[(2∂x +

√
3∂y)φx +

√
3∂xφy ]β, (A.6)

r23 = − 1

4
√

2(1 + ν)
(∂x +

√
3∂y)(φx +

√
3φy) + 3

8ν(1 + ν)
[(2∂x −

√
3∂y)φx −

√
3∂xφy ]β, (A.7)
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Q2 = −
(

3

4ν
√

2(1 + ν)
+ 9(3ν + 1)

16ν3(1 + ν)
β

)
(−êz · ∇ × �φ). (A.8)

At cubic order we recover Eq. (9). In order to go on to fifth order we require that bothσl andσt vanish (up to second
order inβ). As in Section 2.2, the solutions are expressed in terms of the translation modesφx = −(φ20+φ30) and
φy = (φ20 − φ30)/

√
3.

Repeating the same procedures atO(δ4), we obtainrj4. The expressions are too long to be displayed here. Also,
at this order it is impossible to solve forQ4 in closed form. We therefore take the Laplacian of the phase equations
at this order and substituterj4 and∇2Q4 to obtain the nonlinear equations forφx andφy at the codimension-two
point

∂t∇2φx = Lx + NLx0 + β NLx1, (A.9)

∂t∇2φy = Ly + NLy0 + β NLy1, (A.10)

where

Lx = − ν2

8(ν + 1)
∇2[(4∂3

x ∂y + 12∂x∂
3
y )φy + (11∂4

x + 3∂4
y + 6∂2

x ∂
2
y )φx ]

+β

√
2(ν + 1)

16(ν + 1)2
[(3(4 + 13ν)∂5

x ∂y + 6(8 + 3ν)∂3
x ∂

3
y + 9(4 + 3ν)∂x∂

5
y )φy + (3(11+ 7ν)∂6

x

+3(17+ 26ν)∂4
x ∂

2
y + 9(3 + ν)∂2

x ∂
4
y + 9∂6

y )φx ], (A.11)

Ly = − ν2

8(ν + 1)
∇2[(∂4

x + 9∂4
y + 18∂2

x ∂
2
y )φy + (4∂3

x ∂y + 12∂x∂
3
y )φx ]

+β

√
2(ν + 1)

16(ν + 1)2
[(3∂6

x + 3(19+ 13ν)∂4
x ∂

2
y + 9(9 + 2ν)∂2

x ∂
4
y + 27∂6

y )φy + (3(4 + 7ν)∂5
x ∂y

+3(8 + 13ν)∂3
x ∂

3
y + 9(4 + ν)∂x∂

5
y )φx ]. (A.12)

The nonlinear terms NLx0, NLx1, NLy0, and NLy1 are too lengthy to be presented here.
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